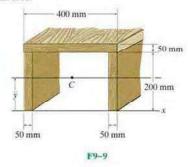
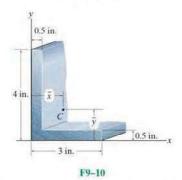
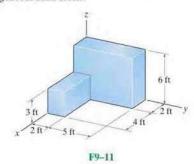
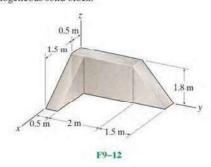

FUNDAMENTAL PROBLEMS

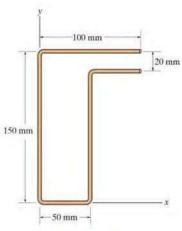

F9-7. Locate the centroid $(\bar{x}, \bar{y}, \bar{z})$ of the wire bent in the shape shown.


F9-8. Locate the centroid \overline{y} of the beam's cross-sectional area.

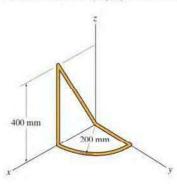

F9-9. Locate the centroid \overline{y} of the beam's cross-sectional area.


F9–10. Locate the centroid (\bar{x}, \bar{y}) of the cross-sectional area.

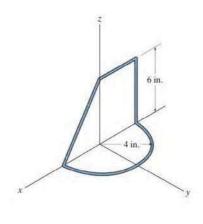
F9-11. Locate the center of mass $(\bar{x}, \bar{y}, \bar{z})$ of the homogeneous solid block.


F9-12. Determine the center of mass $(\bar{x}, \bar{y}, \bar{z})$ of the homogeneous solid block.

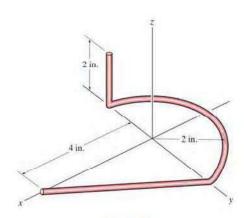
9


PROBLEMS

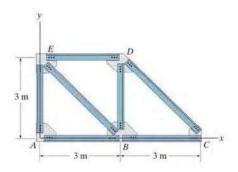
*9-44. Locate the centroid $(\overline{x},\overline{y})$ of the uniform wire bent in the shape shown.


Prob. 9-44

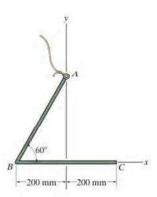
•9-45. Locate the centroid $(\bar{x}, \bar{y}, \bar{z})$ of the wire.


Prob. 9-45

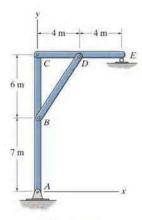
9–46. Locate the centroid $(\bar{x}, \bar{y}, \bar{z})$ of the wire.


Prob. 9-46

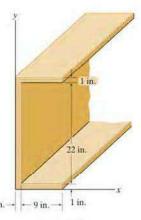
9–47. Locate the centroid $(\bar x,\bar y,\bar z)$ of the wire which is bent in the shape shown.


Prob. 9-47

*9-48. The truss is made from seven members, each having a mass per unit length of 6 kg/m. Locate the position (\bar{x}, \bar{y}) of the center of mass. Neglect the mass of the gusset plates at the joints.

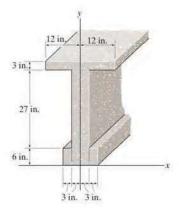

Prob. 9-48

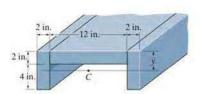
•9–49. Locate the centroid $(\overline{x}, \overline{y})$ of the wire. If the wire is suspended from A, determine the angle segment AB makes with the vertical when the wire is in equilibrium.


Prob. 9-49

9–50. Each of the three members of the frame has a mass per unit length of 6 kg/m. Locate the position (\bar{x}, \bar{y}) of the center of mass. Neglect the size of the pins at the joints and the thickness of the members. Also, calculate the reactions at the pin A and roller E.

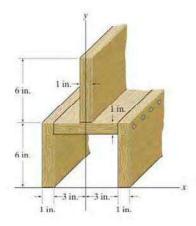
Prob. 9-50


9–51. Locate the centroid (\bar{x}, \bar{y}) of the cross-sectional area of the channel.

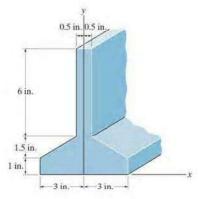

Prob. 9-51

This document w The unregistered	vas created with ^v d version of Win2	Win2PDF availabl PDF is for evalua	le at http://www.dangtion or non-commerc	eprairie.com. cial use only.

- *9–52. Locate the centroid \bar{y} of the cross-sectional area of the concrete beam.
- **9–54.** Locate the centroid \overline{y} of the channel's cross-sectional area.

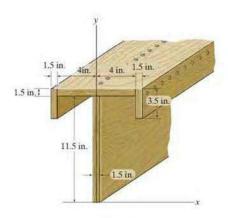


Prob. 9-52

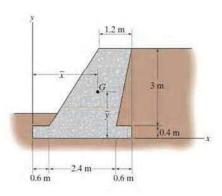


Prob. 9-54

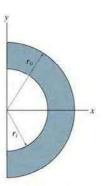
- +9–53. Locate the centroid \overline{y} of the cross-sectional area of the built-up beam.
- **9–55.** Locate the distance \bar{y} to the centroid of the member's cross-sectional area.



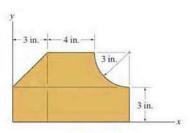
Prob. 9-53


Prob. 9-55

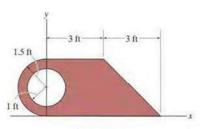
*9–56. Locate the centroid \bar{y} of the cross-sectional area of the built-up beam.


Prob. 9-56

•9–57. The gravity wall is made of concrete. Determine the location (\bar{x}, \bar{y}) of the center of mass G for the wall.


Prob. 9-57

9–58. Locate the centroid \bar{x} of the composite area.


Prob. 9-58

9–59. Locate the centroid $(\overline{x}, \overline{y})$ of the composite area.

Prob. 9-59

*9-60. Locate the centroid (\bar{x}, \bar{y}) of the composite area.

Prob. 9-60