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Physics and Measurement

Like all other sciences, physics is based on experimental observations and quantitative measurements, The
main objectives of physics are to identify a limited number of fundamental laws that govern natural
phenomena and use them to develop theories that can predict the results of future experiments. The
fundamental laws used in developing theories are expressed m the Janguage of mathematics, the tool that
provides a bridge berween theory and experiment.

1. Standards of Length, Mass, and Time:

In mechanics, the three fundamental quantities are length. mass and time. All other quantities in mechanics
can be expressed in terms of these three. In 1960. an intemational committee established a set of standards
for the fundamental quantities of science. It is called the SI (Systéme Intemational), and its fundamental
units of length, mass, and tune are the meter, Kilogram, and second, respectively. Other standards for SI
fundamental units established by the commirtee are those for temperature (the kelvin), electric current (the
ampere), luminous mtensity (the candela), and the amount of substance (the mole), see Table 1.

Table 1: Fundamental ( principle ) dumension and their units in SL

| Quantity length mass time temperature | elec, curent | amount of matter  amount of hight
| Unit Name meter kilogram | second kelvin nmpere mole candle
Unit Symbol | m kg s K A mol ed

In addition to SI. another system of units, the U.S. customary system, is still used in the United States
despite acceptance of SI by the rest of the world. In this system, the units of length, mass, and time are the
foot (ft), slug, and second, respectively.

In addition to the fundamental ST units of meter, kilogram, and second, we can also use other units, such
as millimeters and nanoseconds, where the prefixes milii- and nano- denote multipliers of the basic units
based on various powers of ten. Prefixes for the various powers of ten and their abbreviations are listed in
Table 2.

Table 2: Prefixes for Powers of Ten.

Power Prefix Abbreviation Power Prefix Abbreviation
104 yocto y 107 kilo k
10 zeplo 7 109 mega M
107'% atto a 107 giga G
10°1* femto f 10" tera T
10" pico p 10" peta P
107 nano n 10'% exa E
109 micro m 104 zeta Z
103 milli m 10 yotta Y
10°* centi c

107! deci d

The variables length, time, and mass are examples of fundamental quantities. Most other variables are
derived quantities, those that can be expressed as a mathematical combination of fundamental quantities.
Common examples are area (a product of two lengths) and speed (a ratio of a length to a time interval).



Another example of a denived quantity is density. The density p (Greek letter rho) of any substance is

defined as its mass per unit volume:
m
p=y

In terms of fundamental quantities, density is a ratio of a mass to a product of three lengths.
2. Dimensional Analysis:

In physics. the word dimension denotes the physical nature of a quantity. The distance between two points.
for example, can be measured in feet or meters. which are all different ways of expressing the dimension
of length. The symbols we use i this lecture to specify the dimensions of length, mass, and time are L,
M. and T, respectively. We shall often use brackets [ ] to denote the dimensions of a phiysical quantity. For
example, the symbol we use for speed is v, and in our notation. the dimensions of speed are written [v] =
L/T. As another example, the dimensions of area 4 are [4] = L? The dimensions and units of area, volume,
speed. and acceleration are listed in Table 3.

Table 3: Dimensions and units of four derived quantities.

Quantity Arca (A) | Vohmne (V) | Speed (1) | Acceleration (a) D:nsky(_p)

Damensional L} L LT LT

ST Units o’ o’ nv's m's’ kg/m‘

U.S. customary units f! ft? fi's fi/s? It
Example:

Show that the expression v = at, where v represents speed, a acceleration, and ¢ an mstant of time., is
dimensionally correct.

1—5
L

~i|t~

L
_T_r

Scalar and Vector Quantities
. Scalars:

Many quantities in geometry and physics, such as area, volume, temperature, mass, and time, can be
characterized by a single real number that 15 scaled to appropriate units of measure. These are called scalar
quantities, and the real number associated with each is called a scalar. A scalar quantity is completely
specified by a single value with an approprate unit and has no direction.

Scalar quantities, require only a number (¢ither positive or negative) and a umit for their description. For
example, temperature, mass, length, area, volume, time, distance, speed, work, and energy are all scalars,
The quantities listed above are usually represented by the symbols T, m, L, A, V1. d, v, W, and E,

2. Vectors:
If vou are preparing to pilot a small plane and need to know the wind velocity, you must know both the
speed of the wind and its direction. Because direction is important for its complete specification, velocity
1S a vector quantity. A vector quantity is completely specified by a number with an appropriate unit (the
magnitude of the vector) plus a direction.



Vector quantities, require a positive number. called a vector magnitude: a unit: and a direction for their
description. For example, displacement, velocity, acceleration, force, momentum, angular momentum,
impulse. and magnetic field are all vectors. The symbols for vector quantities are denoted using italic
letters with arrows above them. bold letters, or bold letters with arrows above them. Throughout this
textbook vector quantities will be denoted using bold italic letters with arrows above them, for example,
¥ for velocity, p for momentum, F for force, and @ for acceleration. The magnitude of a vector is always
a positive scalar quantity and can be denoted using the absolute value sign or by using the same letter as
the vector without the arrow above it and in light face italics. For example, the magnitude of the velocity
vector . also called speed, can be denoted as either |?| or v.

To describe vectors we need a frame of reference and a coordinate system. For example, a two-
dimensional (2-D) coordinare system can consist of an x-axis and a y-axis, as shown in Fig. 2. A three-
dimensional (3-D) coordinate system has an additional axis. the z-axis. In Fig. 2. the velocity vector v,
has a magmtude of 30 nv's (vy; = 30 m/s) and a direction of 25° above the x-axis (@, = 25°); the second
velocity, v,, has a magnitude of 15 nv/s (1, = 15 m/s) and a direction of 8, = —10° = 350°.

A 2-D vector can be described in terms of its magnitude and the angle it makes with the positive x-axis
measured in the counterclockwise direction. Such a description 1s referred to as a polar notation or polar
coordinates. For example. the polar notation for vector ¥, in Fig. 2 is 30 m/s with a direction of 25° or 30
nv's [25°]. | y

head

Fig. 2: Graphical representation of two 2-D velocity vectors.
GiVCl'lZ v| = 30 m’s. 0' = 250. vz = '5 m/S. and 02 = _!00 = 3500.



In addition to polar coordinate systems. we will also use orthogonal coordinate systems. where the
coordinate axes are perpendicular to each other. The word orthogonal means directed at right angles. Yon
might encounter the term rectangular coordinate systems as well. Using orthogonal coordinate systems,
vectors can also be described in terms of their components. which are scalar quantities. A 2-D vector has
two components. v, and vy, as shown in Fig. 3. These components are projections of the vector onto the
x- and y-axes. respectively. so vector components can be positive, negative or zero:

U, = vcos25’

Fig. 3: Vector components of velocity vector o (30 m/s [25%)).

’ y = ’ 2 4 p2
vcosé v=_[vf+uy

=

v, v,
vy = vsing tand == or 6=tan™? (—")
Uy Uy

Ve

where [¥] = v and the appropriate value of 8 = tan™? (E‘) can be determined from knowing the quadrant
m which the vector is located.

Using the Pythagorean theorem, we can see that the magnitude of a vector 15 equal to the square root of
the sum of the squares of its components. All angles are measured in a counterclockwise direction from
the positive x-axis. However, it is some-times convenient to use the complementary angle 8°, which
measures the angle clockwise from the vertical y-axis, so that 8* = 90° — 8. Hence,

-— i . —
v, = vsind v= ’v} + v}

=
Vy

vy, = veost”® tanf” = =
Vy

Kinematics
Kinematics 1s the study of motion, which allows us to predict how an object will move, where it will be at
a certain time, when it will arrive at a certain location, or how long it will take to cover a certain distance.
In other words. in kinematics, we analyze how an object’s position, velocity, and acceleration relate to one
another. and how they change with time.



1. Position, Displacement and Distance:
To describe motion, we have to define the concepts of position, displacement, and distance.

1.1. Position:

Consider an object moving 1n one dimension. We denote the position coordinate of the center of mass of
the object with respect to the choice of origin by x(#). The position coordinate 1s a function of time and can
be positive, zero, or negative, depending on the location of the object. The position has both direction and
magnitude. and hence is a vector (Fig. 4), We denote the position coordinate of the center of the mass at 7
= by the symbol xg= x (+ = 0}, The SI umt for position is the meter [m].

- 1

+x

x=0
Fig 4: The position vector, with reference to a chosen origin.

1.2. Displacement:
The change in position coordinate of the mass between the times f; and 1; 1s
Ax = x(t;) — x(t,)
This is called the displacement between the times 7; and 7> (Fig. 5). Displacement is a vector quantity.

x(f2)
—_—
T
+x

- R —
x=0Q Ax
Fig. §: The displacement vector of an object over a time interval
is the vector difference between the two position vectors.

1.3. Distance:

It is very important to recognize the difference between displacement and distance traveled. Distance is
the length of a path followed by a particle. Let's consider an example to help differentiate the terms distance
and displacement. You are sitting at your desk at home, your coffee machine indicates a fresh brew is
ready. you walk 10 steps to fill your coffee mug, and then you bring it back to your desk. Your
displacement in this case is zero, since your final position is the same as your mitial position. However,
the distance you have covered, there and back. is a total of 20 steps.

For one-dimensional motion, that displacement can take on positive or negative values. The distance, on
the other hand, 1s a positive scalar representing the actual distance travelled.



2. Speed, Velocity and Acceleration:

As we discussed earlier. one of the main goals of kinematics is to describe how the object's position
changes with time. We can do this by plotting an x(r) graph. Let us imagine a person walking along a
straight line oriented in the positive x-direction. As shown in Fig. 6, If a person walks at a constant pace
(Fig. 6(a)). the distances between his adjacent positions on the diagram will be equal, However, when he
1s speeding up, the distances between his adjacent positions will continuously increase (Fig. 6(b)). Fig.
6(c) shows the case when the person 1s slowing down; in this case the distances will decrease, The motion
diagram 1llustrates the pace of the person's motion. In physics, to descnibe the pace, or the rate of change
of the object's position, we use the concepts of velocity and speed.

Speed 1s a scalar quantity describing how fast an object 1s moving. while velocity is a vector indicating
not only how fast an object 1s moving. but also where 1t 1s headed (the direction of its motion).

Average speed (a scalar) is the distance covered by the object divided by the time.

Average velocity (a vector) 1s the displacement divided by the elapsed time.
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Fig. 6: Motion diagrams including average velocity vectors
representing the one-dimensional motion of a person walking in the
positive x-direction: (a) Walking at a constant pace. (b) Speeding up.
(c) Slowing down,

For motion along the x-axis. with initial position xg and final position x. the average speed and the average

velocity are given by the following expressions, where /o and 7 are the mitial and final clock readings,
respectively:

d d
Average speed (Vgyg) = s
0

Ax _X—%

Average velocity (Veayg) = Bt -t
=T

Here d is the distance, a scalar quantity that 1s always positive; Ax is the displacement, a vector quantity
that can take on positive or negative values in one-dimensional motion: and Af is the elapsed time. When
the two cars are moving in opposite directions with the same speed. their velocities will be equal in
magmitude but opposite in sign. The ST units for both speed and velocity are metres per second (m/s), but
in everyday life it 1s often convenient to use kilometres per hour (km/h) or miles per hour (mph or mi/h).



Just as velocity represents the rate of change of position i time, acceleration represents the rate of change
of velocity in time. Since acceleration indicates by how much the velocity is changing every second. its
units are metres per second per second, or /s’

The average acceleration of an object is the change m its velocity divided by the elapsed tume:

Av Ve — Xxo
Average acceleration (a =
¢ (xavg) = At t—t,
The relative directions of an object's velocity and acceleration indicate whether the object is speeding up,
slowing down. or moving at a constant velocity. These relationships for one-dimensional motion are

summarized in Table 4. The right column shows v,.(¢) graph for the case of constant acceleration.

Table 4: The Eﬂ'ect ol' the Relative Direction of Velocity and Aoceleranon on (he Ob)ect s Motion in the Case of Constant Acoeleratlon

Speedmg up in the posi- + + v,
tive x-direction /

Slowing down in the = + |
a, negative x-direction

Slowing down in the + - |,
a, positive x-direction
;
- 12N h 7
Speeding up in the nega- - = |w

tive x-direction

Forces and Motion
1. Mass and Gravity Force:

The attractive gravitational force. 7-",. that Earth exerts on an object of mass m is given by:

F,=mg
Here m is the mass of the object and g is the acceleration due to gravity. Near the surface of the earth, g =
9.81 my/s’.



2. Newton's Laws of Motion:

English physicist Isaac Newton (1642-1726) developed three laws that provide the basis for the dynamics
of mechanical situations. These three laws of motion now carry his name.

2.1. Newton's First Law: Ifno net force is exerted on an object, the object’s velocity will not change.
The net force refers to the vector sum of all the forces acting on that object.

2.2. Newton's Second Law: The acceleration of an object depends inversely on its mass and directly
on the net applied force. Newton's second law i1s normally presented in
equation form as:

Fro = F=ma
all forces
2.3. Newton's Third Law: The forces of action and reaction between interacting bodies are equal in
magnitude, opposite in direction.

—

Fi,= ‘i‘z-q

or F‘z = —le

The third law is illustrated in Fig. 7. The force that object 1 exerts on object 2 is popularly called the acrion
Jforce, and the force of object 2 on object 1 is called the reaction force.

Fig. 7: Newton's third law. The force i',z exerted by object 1 on object 2
is equal in magnitude and opposite in direction to the force ?3, exerted
by object 2 on object 1,

3. Spring Forces and Hooke's Law:

Consider the spring-mass system of Fig. 8. In position (a). the mass is in the equilibrium position, where
the spring is unstretched and exerts no force on the mass. If yon move the mass to the nght to stretch the
spring by a displacement X from the equilibrium position. the spring will pull the mass with a force opposite
in direction to the displacement, as shown in Fig. 8(b). When the mass is moved to the lefi, as in Fig. 8(c),
the compressed spring will push the mass to the nght, again in the opposite direction to the extension of the
spring.

The Hooke’s law can be expressed as:



where & 1s the spring constant, F is the force exerted by the spring on the mass, and X is the extension or
compression of the spring from the unstretched equilibrivm state,

a=0
L}
L
(2) :;‘,‘_0
‘ fX=0
L)
(L] A
- P F
. .
o
©) : &

Fig 8. A mums oma speing tht s in {1 egellibeium stme (1)

ched (b}, and r d (e}, For both etienmon and com.
presice, the force ca the mass i in the oppovas direction 1o the
ansl,

4. Friction Forces:

When an object is in motion erther on a surface or i a viscous medium such as air or water, there is
reststance to the motion because the object interacts with its surroundings. We call such resistance a force
of friction.

If we apply an external horizontal force F to the book, acting to the right, the book remains stationary when
F is small (see Fig. 9(a)). The force on the book thar counteracts F and keeps it from moving acts toward
the left and is called the force of static friction f,. As long as the book is not moving. f, = F. Therefore. if
F is increased, f, also increases. Likewise, if F decreases, f, also decreases.

If we increase the magnitude of F as in Fig. 9(b), the book eventually slips. When the book is on the verge
of slipping, f; has its maximum value f; ... as shown in Fig. 9(¢). When F exceeds f; jax. the book moves
and accelerates to the right. We call the friction force for an object m motion the force of kinetic friction
fh. When the book is in motion. the force of kinetic friction on the can 1s less thanf; ., (Fig. 9(¢)). The net

force F — f, in the x direction produces an acceleration to the right. according to Newton's second law. If
F = f. the acceleration is zero and the trash can moves to the right with constant speed.

The magnitude of the force of static fnction between any two surfaces in contact can have the values

fe < pem

where the dimensionless constant y, 1s called the coefficient of static friction and » is the magnitude of the
normal force exerted by one surface on the other,

The magnitude of the force of Kinetic friction acting between two surfaces is
fr = men
where ji, 15 the coefficient of kinetic friction.
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Fig. 9 The direction of the force of friction berween a book and a rough surface is opposite the direction of the applied
force F. Because the two surfaces are both rough. contact is made only at a few points. as illustrated in the “magnified”
view, (a) The magnirude of the force of static friction equals the magnitude of the apphed force, (b) When the magmrude
of the applied force exceeds the magnitude of the force of kinetic fniction. the book accelerates to the night. (¢) A graph of
frictional force versus applied force Notice that f; oy = fa.

5. Uniform Circular Motion:

An object moving with nmform speed 1 along a circular trajectory (path) of radis r has a radially mward
centripetal acceleration with a magnitude of
p?

PP =
Ty

If we apply Newton's second law along the radial direction. we find that the net force cansing the centripetal
acceleration can be evaluated as:
v
ZF, =ma, =m—
o ] y

According 1o Newton's second law, an object moving in a circular path must be experiencing a net force
that pomnts toward the centre of the circle as well. This net force 1s the vector sum of all the forces acting on
the object and it must point radially inward.

Consider a ball of mass m that is tied to a string of length » and moves at constant speed in a horizontal,
circular path as illustrated in Fig, 10. Its weight 1s supported by a frictionless table. Why does the ball move
in a circle? According to Newton's first law, the ball would move in a straight line if there were no force on
it; however, the string prevents motion along a straight line by exerting on the ball a radial force F,. that
makes it follow the circular path. This force 1s directed along the string toward the center of the circle.

Fig. 10: Overhead view of a ball moving in 2
circular path in a horizontal plane. A force F,
directed toward the center of the circle keeps
the ball moving in its circular path.

Work

If a force 15 applied to a body, which then moves, we say the force does work.

Work is the product of the force exerted on an object and the distance through which the point of action of
the force moves.

Let us start with the simplest situation of a rigid body on a frictionless surface that moves a distance d ina
straight line under the influence of a force of constant magmitude. F. that i1s acting parallel to the direction
of motion of the object (see Fig. 11). Since the object 1s ngid, each point of the object moves by the same
distance. In one dimension. if the force is constant with magnitude F. and the body moves a distance 4. the
work done is:
Work done by a force on an object = Force applied X Distance the object moves

Wi = +Fd



— . .
d : ;

f,l

initial position final position
Fig. 11: Force F pushing an object over a distance d .

The SI unit for work is the joule (J). which equals the product of a newton (units of force) and a metre (unit
of displacement).

1J=1Nm

kg.m?

kg.m
g so 1joule = 1 e )

s’

(Note: 1 newton = 1

Energy

If a body has the capacity (or ability) to do work we say it has energy. The energy of the body is the amount
of work 1t can do. In other words. energy is anything that can be converted into work: i.e.. anything that can
exert a force through a distance.

When the body does some work it uses up some of its energy. But if work 1s done on the body its energy
increases. Energy comes in many different forms like mechanical. thermal. light, electrical. magnetic. sound
and nuclear: but we consider only mechanical energy.

Mechanical energy is the capacity of doing work that a body possesses by virtue of its motion (kinetic
energy) or by virtue of 1ts position (potential energy). Mechanical energy 1s of two types:

(a) Kinetic energy — ability to do work by virtue of motion.

Suppose a particle of mass m 1s accelerated from rest to velocity v in a distance x by a constant force F.
Hereu =0, 50

vi=0+2ax

Butalso F = ma. so

F
vi= 2—x
m
& Fx =—=mv?
2: t

Force times distance is work done. so the work done in getting to speed v from speed 0 1s %mv’. This 15

called the kinetic energy of the parmcle. since if we now reverse the process the particle can do this amount
of work 1n slowing down to rest.

kinetic energy (KE) = %mv2

Note: Kinetic Energy cannor be negative. Mass can’t be negative and even 1f velocity 1s negative, it is square
and the square of a negative number is positive.



The work-kinetic energy theorem:
The work-kinetic energy theorem states that if work 1s done on a system by external forces and the only
change in the system is in its speed.

Consider a system consisting of a single object. Fig. 12 shows a block of mass m moving through a
displacement directed to the right under the action of a net force ¥, F. also directed to the right. We know
from Newton's second law that the block moves with an acceleration a. If the block moves through a
displacement Ay = Axi = (x, ~ x; ). the work done by the net force ¥ F is

xf
dw= f D Fdx
X
1 1 1
z W = KE; - KE, = Emv,z -Emuf = Em(v} -vf)
For a nonisolated system, we can equate the change in the total energy stored in the system to the sum of all

transfer of energy across the system boundary. For an 1solated system, the total energy 1s constant-this 1s a
statement of conservation of energy.

=
E

v
Fig. 12: An object updergoing
a displacement Ar = Axi and a
change in velocity under the action
of a constant net force XF,

(b) Potential energy — ability to do work by virtue of position.

i) Gravitational potential energy:

Gravitational potential energy is the energy stored i an object as the result of the elevation of that object.
Suppose we lift a book of mass m from height 0 to height h (see Fig. 13). The force needed is mg, and the
distance moved 1s I, so the work done is mgh.

Again, if we reverse the process the particle can do this amount of work in coming down (very slowly?),

/. Gravitational potential energy (PE,) (due to gravity) = mgh

- -

T
r
|

Fig. 13: The work done by an external agent
- | on the system of the book and the earth.



ii) Elastic Potential Energy:

Elastic potential energy is the energy stored in an object due to the temporary deformation of that object.
1
Elastic potential energy (PE,) = 3 kx?

Spring Constant. k. usually in N /m. is how much force it takes to compress or expand the spring per meter.

x 15 displacement from equlibrium position (or rest position). Equilibrium position (or rest position) 1s
where the force of the spring equals zero.

* Because k can’t be negative and x 1s squared. PE, can never be negative,

« Like Kinetic Energy and Gravitational Potential Energy. PE, is a scalar,
Conservation of Total Mechanical Energy

If no work is done on a body. then its energy is unchanged. We say:

If the rotal work done by external forces acting on a body is zero, there is no change in the toral mechanical
energy of the body, this is called the principle of conservation of mechanical energy.

W = AKE + APE

In other word, energy cannot be created or destroyed (1.e. it is "conserved”). It can only be changed from
one form to another.

We can graph the mechanical energies as a function of time (see Fig. 14):

= Consenvattion of Miachanical Energy|
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Fig. 14: The change of mechanical energy with time.

Consider the system shown m Fig. 15 A mass M, attached to a spring, is resting on an inclined ramp. The
other end of the spring 1s fixed to the top end of the slope. A ball of mass m is at rest at the bottom of the
slope. We choose a coordinate system with the positive y-axis pointing vertically up, and for this discussion
we assume the ball and the block to be point objects, Let the unstretched length of the spring be Lo and the
change in length when the mass M 1s artached as shown be Aly. Also, let the mitial height of mass M be y,.

Now suppose that the ball s given an mitial velocity vg that 15 sufficient for the ball to reach the top of the
ramp in the absence of the mass—spring system. For this system. the mitial kinetic energy is the kinetic
energy of the ball and the potential energy 1s the sum of the gravitational potential energy of the block and
the elastic potential energy of the stretched spring



1
KE; =§mvg

1
PE; = Mgy, + Ek(AZO)2

Fig. 15: A ball rolls up a ramp at velocity v, and hits a spnng .

Suppose at a later time the ball strikes the block and pushes the block up the ramp. Let the height of the
block at some instant be y, the change in the spring’s length be Al, and the speed of the ball be v. Since the
ball and the block are in contact, the speed of the block is also v. At this instant, the kinetic energy is the
sum of the kinetic energies of the ball and the block and the total potential energy 1s the sum of the
gravitational potential energies of the ball and the block plus the elastic potential energy of the spnng.
Theretore.

1 1 1
= — 2 —_ 2:— 2
KE My +2Mv 2(m+M)v

1 1
PE =mgy + Mgy + Ek(AI)Z =(m+ Mgy +Ek(ﬁl)2
Then, the law of conservation of energy states that

1 1 1 1
Emvg + Mgy, +Ek(ﬁia)2 = E(m +M)v2+(m+M)gy +Ek(AI)Z



Power
Power 1s defined as the rate at which work is done
P=Fv
where F is the force on a body. and v is 1ts velocity. This definition applies even if the force and/or velocity
are changing. If the force 1s constant then W = Fx and
aw
dt

so i this case the power is the “rate of dong work’,

dx
Fz—Fl'—P

(One of the reasons why power is important in mechanics is that, for example. a car engime working at a
fixed rate - at a fixed r.p.m. - generates (approxunately) a fixed power: the force the engine generares will
however vary with the speed of the car. As a car goes up a steep hill at constant power. 1t will slow down.
As the velocity decreases the force produced by the engine will increase. until it 1s sufficient to maintain a
constant (lower) velocity.)

The unit of power is joules/sec: this also has the name “watt* (symbol W),

joule Nm  kg.m?
lwatt = 1 =1 =1
sec s s

{Note: 1 kW = 1000W,)
A unit power in the U.S. customary system is the horsepower (hp):

1hp =746 W

Linear Momentum
The linear momentum of an object is defined as the product of its mass and its velocity:
p=mv
Momentnun 1s a vector quantity because 1t equals the product of a scalar quantty, m, and a vector quantity.
v, and has units of Kilogram metres per second ( 32—"1 ).

Momentum and Kinetic Energy:

From the definition of momentum. we get:

—
- P
v=—
m
2
> _ P
Ve =—1
mz



Power

Power 1s defined as the rate at which work 1s done

P=F-v
where F is the force on a body, and v is its velocity, This defimtion applies even if the force and/or velocity are
changing. If the force is constant then W = Fx and

dw dx
I:FE-F”;P

s0 in this case the power is the ‘rate of doing work”.

(One of the reasons why power is important in mechanics is that, for example, a car engine working at a fixed
rate - at a fixed r.p.m. - generates (approximately) a fixed power; the force the engine generates will however
vary with the speed of the car. As a car goes up a steep hill at constant power, it will slow down. As the velocity
decreases the force produced by the engine will increase, until it 1s sufficient to maintain a constant (lower)
velocity.

The unit of power is Joules/sec; this also has the name “watt® (symbol W).

Joule N.m  kg.m?
lwatt = 1 =1 =1——7
sec s s

(Note: 1 kW = 1000 W.)

A unit power in the U.S. customary system is the horsepower (hp):
1 hp=746 W

Linear Momentum
The linear momentum of an object 1s defined as the product of its mass and its velocity:
p=mv
Momentum is a vector quantity because it equals the product of a scalar quantity, m. and a vector quantity. v,
and has unis of kilogram metres per second ( ""T‘m ).

Momentum and Kinetic Energy:

From the definition of momentum. we get:

g=L
m
2
2 o
m?

If we substiture this into kinetic energy equation. we find that
1p?

e — X = /——
om TP V2ZmK



Rate of Change of Linear Momentum and Newton's Laws:

Taking the denvative of linear momentiun Equation with respect to time gives:

dp d dm dv
'd—t' -a—t(ml_i) - ET’W "!E
If we consider an object whose mass does not change, then % =0
dp._...d¥ ...
@t e e

We can combine the Newton's second law equation (F ., = ma) and above equation to write Newton's second
law as,

dp
ot — H?

Here we see that the net force is equal to the rate of change of linear momentum of the object with respect to
timne,

F,

Law of Conservation of Linear Momentum:

Consider two particles 1 and 2 that can interact with each other but are isolated from their surroundigs (Fig. 16).
That 1s. the particles may exert a force on each other. but no external forces arc present. It 1s important to note
the impact of Newton's third law on this analysis. If an mtemal force from particle 1 (for example. a gravitational
force) acts on particle 2, then there must be a second intemal force-equal in magmtude bur opposite in direction-
that particle 2 exerts on particle 1.

P1 = myvy

P2 = MoVy



Fig. 16: Ar some instant, the momentum of particle 1 1s p; = myw, and the momenmm of particle 2 15 p; = mpv,.
Note that Fy; = —~F,y. The total momentum of the system peoy 15 equal to the vector sum py + pa.

Suppose that at some instant, the momentum of particle 1 is py and that of particle 2 is p,. Applying Newton's
second law to each particle, we can write

dpz
le =— aud Flz =T

where F,, is the force exerted by particle 2 on particle 1 and Fy; is the force exerted by particle 1 on particle 2.
Newton's third law tells us that Fy, and Fp4 are equal in magnitude and opposite in direction. That 1s, they form
an action-reaction pair Fyp = —F5y. We can express this condition as
F 21 -+ F 12 = 0
or as:
dp, dp, d
e e Ta PP =0

Because the time derivative of the total momentum poe = py + P2 is zero, we conclude that the total momentium
of the system must remain constant:

Pror = z P = p: + P2 = constant

system
or, equivalently, Pii t P2i = Pis + Par
or, equivalently. Pai + P2t = Pay + P2y

where p,; and p,; are the initial values and p, ¢ and p, ¢ are the final values of the momenta for the two particles
for the time interval during which the particles interact. This equation in component form demonstrates that the
total momenta in the x. v. and = directions are all independently conserved:

Piix + P2ix = Pafx + Pasx Py * P2iy = Piry T+ Pasy Piiz + Pziz = P1fz + Pasz

This result, known as the law of conservation of linear momentum, can be extended to any number of particles
i an 1solated system. It is considered one of the most important laws of mechanics.

Impulse
The mmpulse I of a force is defined as the change in momentum Ap caused by that force.
From Newton's Second Law. if F is constant
dp
dt
Then 1 =dp = Fdt

Integrating equation above to find the change in the momentum of a particle when the force acts over some time
interval as:

fz
i=ap= f Fo dt
(51



