
Data Structure 1

1

What is Data?

Data is a set of facts or values (such as alphabets, numbers, symbols, or a
mixture of them). Data can be analyzed or used in an effort to gain knowledge,
information or make decisions; and represented in a form suitable for processing
by computer.

What is Information?

Information is a processed, interpreted, organized, structured or presented
data, so to make the data meaningful or useful.

What is data structure?

Data structure is a way of organizing and storing data so that operations

can be performed efficiently and easily. It represents the knowledge of data to be
organized in memory. It should be designed and implemented in such a way that
it reduces the complexity and increases the efficiency.

Not all data structures can perform all the operations efficiently in term of time
and storage space, So, that led to develop different types of data structures.
An example of the important of data structure is, if you need to find a specific
book in an unorganized library, that task would take an enormous amount of
time. Just like a library organizes their books, data need to be organized so
operations can be performed efficiently.

There are many operations that could perform on data as follows:

• Accessing

• Inserting

• Deleting

• Finding

• Sorting

• Analyzing

Data Structure 1

2

Data Structures is about rendering data elements in terms of some relationship,
for better organization and storage. For example, if have some data which has,
player's name as a "string" and age 26 as an integer data type, it can organize this
data as a record like Player record, which will have both player's name and age in
it. Now it can collect and store player's records in a file or database as a data
structure as follows. Player

Player Record
Name Age

Jack 20

Taylor 22

Basic types of Data Structures
Anything that can store data can be called as a data structure, hence Integer,
Float, Boolean, Char etc, all are data structures. They are known as Primitive Data
Structures.
Then also have some complex Data Structures, which are used to store large and
connected data. Some example of Abstract Data Structure (ADS) are:

• Linked List

• Tree

• Graph

• Stack

• Queue

All these data structures allowed to perform different operations on data. These
data structures have been selected based on which type of operation is required.
Will look into these data structures in more details in the later lessons.

Data Structure 1

3

The data structures can be classified based on the following characteristics:

Characteristic Description

Linear In Linear data structures, the data items
are arranged in a linear sequence.
Example: Array

Non-Linear In Non-Linear data structures, the data
items are not in sequence. Example:
Tree, Graph

Homogeneous In homogeneous data structures, all the
elements are of same type. Example:
Array

Non- Homogeneous In Non-Homogeneous data structure, the
elements may or may not be of the same
type. Example: Structures

Static Static data structures are those whose
sizes and structures associated memory
locations are fixed, at compile time.
Example: Array

Dynamic Dynamic structures are those which
expands or shrinks depending upon the
program need and its execution. Also,
their associated memory locations
changes. Example: Linked List created
using pointers

Data Structure 2

4

What is Array?

An array is a data structure that contains a group of elements. Typically these

elements are all of the same data type, such as an integer or string. Arrays are

commonly used in computer programs to organize data so that a related set of

values can be easily sorted or searched.

The important characteristics of an array are:

• Each element has the same data type (although they may have different

values).

• The entire array is stored contiguously in memory (that is, there are no

gaps between elements see figure 1).

Arrays can have more than one dimension. A one-dimensional array is called

a vector ; a two-dimensional array is called a matrix.

1. One-dimensional

In C++ we define an array like follows:

Char X[N]; where X is the name of the array and N is the number of elements in

the array.

The address of the first element in the array is the Base Address(BA) for that

array, the BA is used to find each element location of the array in memory.

Memory representation of one-dimensional array:

Figure1: memory representation of a vector

https://techterms.com/definition/datatype
https://techterms.com/definition/integer
https://techterms.com/definition/string
https://www.webopedia.com/TERM/S/store.html
https://www.webopedia.com/TERM/C/contiguous.html
https://www.webopedia.com/TERM/M/memory.html
https://www.webopedia.com/TERM/V/vector.html
https://www.webopedia.com/TERM/M/matrix.html

Data Structure 2

5

How to find an element of an array location in memory?

Before that we need to know the fundamental size of each data type in C++. The

following table shows the sizes of the data types.

Type Size (Byte)
Integer 4

Short integer 2
Long Long integer 8

Char 1
Float 4

Double 8

Now to find the location of A[i], we do the following:

Loc(A[i])= BA + i * size.

Exercise 1) Find the location of A[7] from the int A[50], the BA=50.

Loc(A[7])= 50 + 7 * 4

 =50 + 28

 = 78

 Note: The fourth element in the array is not Loc(X[4]), it’s X[3].

Exercise 2) Let’s consider that we have Char X[100], Find the fourth element

location, if we got the BA is 500.

Loc(X[3])= 500 + 3 * 1

 = 500 +3

 = 503

Exercise 3) Find Loc(M[3]) of Double M[10]. The BA is 75.

Loc(M[3])= 75 + 3 * 8

 =75 + 24

 = 99

Data Structure 2

6

2-Two Dimension Array: it is a Data Structure contains a group of data

elements that can be represented as M*N, where the M number of rows of

that array and N number of columns. Each element can be accessed via two

indexes, which are:

0 <= i < M

 0 <= j < N

For example A[3][5], i=3 and j=5, which means the element located in the 4th row

and 6th column.

 How to calculate an element address of two-dimension array in memory?

There are two methods to calculate an element address in two-dimension array.

1- Row-Wise Method: In this method, the programming language represents

an array in memory row by row starting by the BA(Based Address). If the

above example considered and got the BA=700, the first element A[0][0]

address =700. The calculation the address of A[i][j] using ROW-WISE

method will be according to the following:

Loc(A[i][j]) = BA + (N * i + j) * size

N = total number of array columns.

Exercise 4) Find the address of the element A[3][2] of the array Float A[8][5],

BA=1000.

Sol: Loc(A[3][2]) = 1000 + (5 * 3 + 2) * 4

 =1000 + (17) * 4

 =1000 + 68 = 1068

Data Structure 2

7

Exercise 5) We have got the array Long Long int T[5][7] and the BA=900, calculate

the address of the T[3][5] using row-wise method.

Sol: Loc(T[i][j]) = BA + (N * i + j) * size

 Loc(T[3][5]) = 900 + (7 * 3 + 5) * 8

 = 900 + (26) * 8

 = 900 + 208 = 1108

2- Column-Wise Method: Array is represented in memory column by column

starting from BA. The calculation the address of A[i][j] using column-wise

method as follows:

Loc(A[i][j]) = BA + (M * j + i) * size

M = total number of array rows.

Exercise 6) Re-calculate the addresses of the previous examples using the column-

wise method.

Sol exercise 4 in column-wise method: (Find the address of the element A[3][2] of

the array Float A[8][5], BA=1000.)

Loc(A[3][2]) = 1000 + (8 * 2 + 3) * 4

 = 1000 + (19) * 4

 = 1000 + 76 = 1076

DS_4

8

Structures:

A structure is a group of data elements grouped together under one name. These

data elements, known as members, can have different types and different

lengths. Data structures can be declared in C++ using the following syntax:

struct struct_name {

member_type1 member_name1;

member_type2 member_name2;

member_type3 member_name3;

.

.

}

Where struct_name is a name for the structure. Within braces {}, there is a list

with the data members, each one is specified with a type and a valid identifier as

its name.

For example:

#include<iostream>

Using namespace std;

struct student {

 string name;

 float mark1;

 float mark2;

 float avg;

};

int main(){

float sum=0;

student ali;

cin >> ali.mark1;

cin >>ali.mark2;

sum = ali.mark1 + ali.mark2;

ali.avg = sum/2;

cout << ali.avg;

}

This declares a structure type, called student, and defines it having three

members: mark1, mark2 and avg, each of a different fundamental type. This

declaration creates a new type (student), which is then used to declare one object

DS_4

9

(variable) of this type: Ali. Note how once student is declared, it is used just like any

other type.

This struct is designed and implement for one student only; to implement for a

group of students, let’s say a 100 student, we create an array for that group as the

defined struct above, just change the bit in the main function.

int main() {

student std[100];

}

Calculate the location of a structure member in the memory:

To calculate location of a structure member, we use the same previously

mentioned methods for one and two dimensions arrays.

Exercise 7) Find the location of the member bk[6] of Book bk[10] when BA=25 and

OS=16 bit.

 struct Book {

 char title;

 short int ISBN;

 char author;

}

Book bk[10];

We use the following:

Loc(bk[i])= BA + i * size

bk[6] = 25 + 6 * (1 + 2 + 1)

 = 25 + 6 * 4

 = 25 + 24 = 49

DS_4

10

Exercise 8) Calculate the member’s location std[4] of Student std[20], BA=200.

struct Student {

 char name[20];

 int age;

 float avg;

} std[20];

Loc(std[i])= BA + i * size

Loc(std[4]) = 200 + 4 * (20 + 4 + 4)

 = 200 + 4 * 28

 = 200 + 112 = 312

In case it requires to calculate a member of an object like std[4].avg, it needs to

calculate the size of shifted bytes.

Shifted_bytes = 20 + 4 = 24.

 Loc(std[i].avg)= BA + i * size + shifted_bytes

Exercise 9) Having the following structure, BA=500:

struct Student {

 char name[15];

 int age;

 char gender;

 float avg;

} S[30];

Find the following locations:

1-S[7]

2-S[3].age

3-S[6].name[12]

4-S[6].gender

5-S[6].avg

Sol:

1- Loc(S[i])= BA + i * size
Loc(std[7])= 500 + 7 * (15 + 4 + 1 + 4)
 = 500 + 7 * 24
 = 500 + 168 = 668

DS_4

11

2- Loc(S[3].age)= BA + i * size + shifted_bytes
 = 500 + 3 * 24 + (15)
 = 500 + 72 + 15
 = 500 + 87 = 587

3- Loc(S[6].name[12])= BA + i * size + shifted_bytes
 = 500 + 6 * 24 +(12)
 = 500 + 144 + 12
 = 500 + 156 = 656

You solve 4 and 5.

Exercise 10) Calculate the location of A[1][2], BA=6, as having the following

structure:

struct Book {

 char title;

 long long int No;

 float S_no;

}

Book A[3][4];

Here, finding the member location is depending on which method we’re using:

For the column-wise method:
Loc(A[i][j]) = BA + (M * j + i) * size

Or for the row-wise method:
Loc(A[i][j]) = BA + (N * i + j) * size

DS_4

12

Nested Structure:

struct Name {

 char N1;

 int N2;

 }

struct Book {

 Name title;

 int No;

 float S_no;

}

Book X[10];

Find Loc(X[5]), BA=10.
Sol:

 Loc(x[i])= BA + i * size

 Loc(x[5])= 10 + 5 * (4 + 4 + (4 + 1))

 =10 + 5 * 13

 = 10 + 65 = 75

DS_5 Stack

13

What is Stack?

A stack is a data structure consisting of a set of homogeneous elements and is based

on the principle of Last In First Out (LIFO). It is a commonly uses two major

operations, namely push and pop. Push and Pop are carried out on the topmost

element, which is the item most recently added to the stack. The push operation

adds an element to the stack while the pop operation removes an element from

the top position. The stack concept is used in programming and memory

organization in computers.

A stack represents a sequence of objects or elements in a linear data structure

format. The stack consists of a bounded bottom and all the operations are carried

out on the top position. Whenever an element is added to the stack by the push

operation, the top pointer is increment by one, and when an element is popped

out from the stack, the top pointer is decrement by one. A pointer to the top

position of the stack is also known as the stack pointer.

A stack may be fixed in size or may have dynamic implementation where the size is

allowed to change. In the case of bounded capacity stacks, trying to add an element

to an already full stack causes a stack overflow exception. Similarly, a condition

where a pop operation tries to remove an element from an already empty stack is

known as underflow.

A stack is considered to be a restricted data structure as only a limited number of
operations are allowed (Push & Pop). Besides the push and pop operations,
certain implementations may allow for advanced operations such as:

• Peek — View the topmost item in the stack.

• Duplicate — Copy the top item’s value into a variable and push it back into
the stack.

• Swap — Swap the two topmost items in the stack.

DS_5 Stack

14

Stack Example1

Stack Example2

DS_5 Stack

15

Implementation of Stack using array in C++:

To implement a stack using array in C++, two variables need to be defined first.

1- Max: Size of stack.

2- Top: it is a pointer pointing to the first element in the stack.

#include<iostream>

using namespace std;

#define max 5

int stack1[max], top=-1;

• Push function.

1- Check the stack is not overflow(top<max-1).

2- Increase the top pointer by 1(top +=1).

3- Add the new item into the stack (stack[top]=item)

As follows:

void push(int x)

{

if (top>=max-1){

cout<<"The stack is overflow.\n";

exit(1);

}

else

{

 top +=1;

 stack1[top]=x;

 cout<<x<<" is inserted into the stack.\n";

} }

• Pop function.

1- Check the stack is not underflow (top != -1).

2- Take the top item of the stack (item=stack[top]).

3- Decrease the top pointer by 1(top -=1).

DS_5 Stack

16

As follows:

int pop()

{ int item;

 if (top <0)

 {

 cout<<"The stack is underflow.\n";

 exit(1);

 }

 else

 {

 item= stack1[top];

 top -=1;

 }

 return item;

}

• Main function.

1- Push or pop all the desire items into and from the stack.

As follows:

int main()

{

 int y,l;

 for(int i=0; i<max;i++)

 {

 cout <<"Enter an integer no. to be pushed into the stack\n";

 cin >>y;

 push(y);

 }

 for(int j=0; j<max+1;j++){

 l=pop();

 cout <<"The element that popped out from the stack is "<<l<<"\n";

 }

}

H.W.) Write a C++ code to design a stack that contain 10 integer numbers, then find

the summation of all the negative numbers in the stack.

DS_5

17

Stack operations:

Push -> Stacking (S).

Pop-> Unstacking(U).

Ex10) If a stack gets the following input stream from right to left (R,N,Y,B,M), find

the output after applying the following group of stack operations(left->right).

1- SSUUSUSUSU

Input: M B Y N R

Operations: S S U U S U S U S U

Output: B M Y N R

2- SSSUSUUSUU

Input: M B Y N R

Operations: S S S U S U U S U U

Output: Y N B R M

Ex11) If a stack gets the following input stream from left to right (1,2,3,4,5),

demonstrate which one of the following outputs is correct according to stack

mechanism.

a- 2 4 5 3 1 (left->right)

Input: 1 2 3 4 5

Operations: S S U S S U S U U U

Output: 2 4 5 3 1 The output is correct.

DS_5

18

Input stream left to right (1,2,3,4,5):

b- 4 2 3 1 5

Input: 1 2 3 4

Operations: S S S S U U U U

Output: 4 3 2 1 This answer is incorrect.

c- 4 5 1 2 3

Input:

Operations:

Output:

d- 4 3 5 2 1

Input:

Operations:

Output:

H.W.) Write a C++ code to find the maximum value in a stack of 10 integer numbers.

Push the 10 numbers first into the stack.

H.W.) Write a C++ code to create two arrays as an output of a stack, the first array

contains lowercase letters, while the second array stores the uppercase letters.

DS_7

19

What are Pointers?

Pointers are symbolic address of a memory location. As known every variable is a

memory location and every memory location have its address defined which can

be accessed using ampersand (&) operator which denotes an address in memory.

So, Pointer can be defined as a variable whose value is the address of another

variable or (variable that stores the address of another variable). Like any variable

or constant, it must declare a pointer before it can work with it. The general form

of a pointer variable declaration is :

type *var-name;

Consider the following which will print the address of the variables defined:

void main () {

 int var1;

 cout << "Address of var1 variable: ";

 cout << &var1 << endl;

}

When the above code is compiled and executed, it produces the following result :

Address of var1 variable: 0xbfebd5c0

Here, type is the pointer's base type; it must be a valid C++ type and var-

name is the name of the pointer variable. The asterisk you used to declare a

pointer is the same asterisk that you use for multiplication. However, in this

statement the asterisk is being used to designate a variable as a pointer. Following

are the valid pointer declaration:

int *ip; // pointer to an integer

double *dp; // pointer to a double

float *fp; // pointer to a float

char *ch // pointer to character

DS_7

20

The actual data type of the value of all pointers, whether integer, float, character,

or otherwise, is the same, a long hexadecimal number that represents a memory

address. The only difference between pointers of different data types is the data

type of the variable or constant that the pointer points to.

Using Pointers in C++

There are few important operations, which we will do with the pointers very

frequently.

a-define a pointer variable.

b-Assign the address of a variable to a pointer.

c-Finally access the value at the address available in the pointer variable. This is

done by using unary operator * that returns the value of the variable located at

the address specified by its operand.

Following example makes use of these operations:

int main(){

int x=100;

int *p; //a

p=&x; //b

cout<<p<<"\n";

cout<<*p<<"\n"; //c

}

Using pointers in functions:

#include<iostream>

using namespace std;

int *read_a(){

int *A;

int a;

cin >>a;

A =&a;

return A;

}

int *read_b(){

int *B;

int b;

cin >>b;

B =&b;

return B;

}

int main(){

int *p;

p = read_a();

cout<<p<<"\n"<<*p; }

DS_7

21

Example) write a C++ program to implement stack using structures with pointers.

H.W.) Write a C++ code to push 10 integer values into a stack, then create two

stacks (one contains the even values of the first stack & the second contains the

odd values). Use structures to implement the three stacks.

Example) Write a C++ program to merge two stacks (size of each stack is 5 float

elements) into an array.

H.W.) Write a C++ code to do the following:

1- create two stacks (stack1[10] & stack2[15])

2- Switch the elements of the theses stacks.

H.W.) Write a C++ function to find the number of elements in a stack (the

number of the elements is unknown).

H.W.) Write a C++ code to push 10 float values into a stack then write a function

that calculates the average of the stack elements, then push the average into the

stack.

What is the output of the following code(push & pop functions are already

implemented):

#define max 10

int main(){

int x1,y;

for(int i=2;i<max;i+=2)

{

cout<<"i's value is "<<i<<endl;

x1=(2*i)+2;

push(x1);

}

for(int j=2;j<max;j+=2)

{

y=pop();

DS_7

22

cout<<y;

}

Implementing Stack using Structures:

 To avoid re-write push & pop functions for each stack that is needed, it is vital to

write a re-usable function (write functions and apply it to all implemented stacks).

To achieve this aim, implementing stack using structures gives the solution. This

task is performed with pointers.

DS_8

 23

1-Queue

What is Queue:

Queue is another type of computers data structure. It is a linear collection of
items. Unlike Stack, queue has two ends, in which each element is inserted
from one end called the REAR, and the removal of existing element takes place
from the other end called as FRONT. This makes queue as FIFO (First in First
Out) data structure, which means that element inserted first will be removed
first. Which is exactly how queue system works in real world. If you go to a
ticket counter to buy tickets, and you are first in the queue, then you will be
the first one to get the tickets. Same is the case with Queue data structure.
Data inserted first, will leave the queue first. The following figure shows how
queue works in the real-world.

The process to add an element into queue is called Enqueue and the process
of removal of an element from queue is called Dequeue.

DS_8

 24

Queue example:

Here is an illustration on how queue works, and the changes on the values of

Rear and Front pointer

1. When queue is empty, both Rear = Front = -1
2. Enqueue(5)

 Rear=Front=0

3. Enqueue(7)

 Rear=1 Front=0

4. Enqueue(25)

 Rear=2 Front=0

5. X=Dequeue(), X=5.

 Rear=2 Front=1

6. X=Dequeue(), X=7.

 Rear=2 Front=2

7. X=Dequeue(), X=25.
Rear = Front = -1

5

7 5

7 5 25

25 7

25

DS_8

 25

Note: When a queue has only one item, the values of Rear and Front are the

same. In other words, if Rear and front pointer are equal, means queue contains

one item only.

Queue Applications:

Queue is used whenever it needs to manage any group of objects in an order in
which the first one coming in, also gets out first while the others wait for their
turn, like in the following scenarios:

1. Serving requests on a single shared resource, like a printer, CPU task
scheduling etc.

2. In real-world scenario, Call Centre phone systems uses Queues to hold
people calling them in an order, until a service representative is free.

3. Handling of interrupts in real-time systems. The interrupts are handled
in the same order as they arrive i.e. First come first served.

Enqueue Algorithm:

1. Check if the queue is not full. If it is, then raise an error and exit.
2. Check if the queue is empty, if it is, then Rear = Front == 0.
3. If none of the above cases, then Rear +=1.
4. Insert item into the queue.

Enqueue Function

#define max 10

int front=-1, rear=-1;

int q[max];

void enqueue(int x){

 //if the queue is full

 if (rear>=max-1){

 cout<<"The queue is full.\n";

 exit(1);

 }

 //if the queue is empty

 else if(rear ==-1 && front==-1){

 rear =0;

 front =0;

 cout<<"The queue was empty and new item will be

enqueued\n";

 }

 else {

 rear ++;

 }

 q[rear]=x;

 cout<<"The item "<<x<<" is enqueued\n"; }

DS_8

 26

Dequeue Algorithm:
Accessing data from the queue is a process of two tasks − access the data
where front is pointing and remove the data after access. The following steps
are taken to perform dequeue operation

1. Check if the queue is not empty. If it is, then raise an error and exit.
2. Check if Rear == Front, if it is, means the queue has only one item,

dequeuer the item the reset the pointers, Rear = Front= -1.
3. If none of the above cases, then, dequeue the item and increment Front

by one (Front +=1).

int dequeue(){

 int z;

 //if the queue is empty

 if(front == -1){

 cout<<"The queue is empty.\n";

 exit(1);

 }

 //means last item in the queue.

 else if (front == rear)|| (front > rear){

 z=q[front];

 cout<<"\nfront = "<<front;

 cout<<"\nrear = "<<rear<<"\n";

 front=-1;

 rear=-1;

 //cout<<"\nLast item in the queue.\n";

 }

 else{

 z=q[front];

 //cout<<"\nThe "<<q[front]<<" item in dequeued.\n";

 front ++;

 }

return z;

}

Exercise: Show the contents of queue and the positions of Front & Rear

pointers after performing the following enqueue and dequeue operations. Queue

size=5.

[Queue initialization, enqueue(10), enqueue(20), dequeue(), enqueue(30),

enqueue(40), dequeue(), enqueue(50), dequeue(), dequeue(), dequeue()].

DS_8

 27

H.W) Show the contents of queue and the positions of Front & Rear pointers

after performing the following enqueue and dequeue operations. Queue size=5.

[Queue initialization, enqueue(A), dequeue(), enqueue(B), enqueue(C),

enqueue(D), dequeue(), dequeue(), enqueue(E), dequeue()]

2- Circular Queue

Why Circular Queue?

There is a weak point in Queue data structure, which is raised after a few of
enqueueing and dequeuing operations, the size of the queue is reduced. The
indexes 0 and 1 can only be used after the queue is reset when all the
elements have been dequeued. The following figure shows the normal queue
problem.

How Circular Queue Works

Circular Queue works by the process of circular increment i.e. when we try to
increment any variable and we reach the end of queue, we start from the
beginning of queue by modulo division with the queue size.

i.e.

if REAR + 1 == 5 (overflow!)

REAR = (REAR + 1)%5 = 0 (start of queue)

DS_8

 28

To check for full queue has a new additional case:

• Case 1: FRONT = 0 && REAR == SIZE – 1

• Case 2: FRONT = REAR + 1

DS_8

 29

Enqueue Function

#define max 10

int front=-1, rear=-1;

int q[max];

void enqueue(int x){

 if((rear>=max-1 && front==0) || (front == rear+1)){

 cout<<"The queue is full\n";

 exit(0);

}

 else{

 if(front==-1){

 front=0;

 rear=(rear+1)%max;

 q[rear]=x;

 cout<<"The queue was empty. A new item is added

"<<x<<" \n";

 }

 else{

 rear=(rear+1)%max;

 q[rear]=x;

 cout<<"A new item "<< x << " is enqueued\n";

 }

}

}

Dequeue Function

int dequeue(){

 int z;

 //if the queue is empty

 if(front == -1){

 cout<<"The queue is empty.\n";

 exit(1);

 }

 else {

 z=q[front];

 if (front == rear) {

 front=-1;

 rear=-1;

 }

 else{ front = (front+1)% max;}

 }

return z;}

Lab exercise: Implement a Queue of 10 integer values using C++, then enqueue
10 values and dequeue the inserted items.

H.W: Implement a Queue of 15 characters using C++, then dequeue all the inserted items
except the content of no. 6 cell.

DS_8

30

Linked List (القوائم الموصولة):

What is Linked list?

linked list is a linear data structure, unlike arrays, elements are not stored at contiguous
memory locations as can be shown in figure1, they are linked using pointers as shown in the
figure2:

Node1 Var. file Node2 Var. Var. Var. Node3

Figure1: RAM(Random Access Memory).

Figure 2: Example of a linked list with 3 nodes

The elements of a linked list are called the nodes. A node has two fields i.e. data and next
(Link). The data field contains the data being stored in that specific node. It can be a single
variable or many variables presenting in data section of node. The next field contains the
address of the next node, so this is the place where the link between nodes is established.

No matter how many nodes are present in the linked list, the very first node is
called Head and the last node is called Tail. If there is just one node created then it is called
both head and tail.

A linked list is a dynamic data structure. The number of nodes in a list is not fixed and can
grow and shrink on demand. Any application which has to deal with an unknown number of
objects will need to use a linked list.

DS_8

31

Applications of linked list in real world:
1. Image viewer – Previous and next images are linked, hence can be accessed by next

and previous button.
2. Previous and next page in web browser: the access previous and next url searched in

web browser by pressing back and next button since, they are linked as linked list.
3. Music Player: Songs in music player are linked to previous and next song. you can

play songs either from starting or ending of the list.

One disadvantage of a linked list against an array is that it does not allow direct access to
the individual elements. If you want to access a particular item then you have to start at the
head and follow the references until you get to that item.

Linked List vs. Arrays:

Advantages over arrays
1) Dynamic size
2) Ease of insertion/deletion

Drawbacks(disadvantages):
1) Random access is not allowed. It have to access elements sequentially starting from the
first node. So it cannot do binary search with linked lists efficiently with its default
implementation.
2) Extra memory space for a pointer is required with each element of the list.

Insert a Node at the beginning of a Linked list:

• First we need to define node structure.

#include <iostream>

using namespace std;

struct Node {

 int data;

 struct Node *link;

};

Node *head = NULL; //Create a head pointer.

• Then implement the Insert function.

void insert(int new_data) {

 //Here we create & reserve a place in memory for the new node.

Node *new_node= new Node();

new_node->data = new_data; //fill the new_node with data.

new_node->link = head; //make the head node linked to the new_node.

head = new_node; //the new_node will be the head now.

}

DS_8

32

To print the whole list, we need to implement the display function as follows:

void display() {

 struct Node *ptr;

 ptr = head;

 while (ptr != NULL) {

 cout<< ptr->data <<" "<<"\n";

 ptr = ptr->link;

 }

}

To delete a node at the beginning of linked list, we need to implement the
delete function as follows:

void del(){

 if (head == NULL){

 cout<<"The list is empty\n";

 exit(0);

 }

 else{
 //define ptr to point to the head

 Node *ptr=head;
//then make the head pointer pointing to the next node(the head->link)

 head = head->link;
 //delete the head node

 free(ptr);

 }

}

Lab exercise: Implement a linked list and let user enter 5 integer values, then print the

list. Once you’ve done, delete the first two nodes and print the list again.

H.W.) Implement a linked list that contains 10 characters, then make the display function

print the upper-case characters only.

DS_8

33

• Implementation of inserting function at the end of a linked list:

void insert_tail(int x){

 Node *ptr;

 ptr=head;

 Node *new_node=new Node;

 new_node->data=x;

 if(ptr==NULL){

 new_node->link =head;

 }

 else{

 while(ptr->link !=NULL){

 ptr=ptr->link;

 }

 ptr->link=new_node;

 new_node->link=NULL;

 }

}

• Implementation of delete function from the end of a linked list.

void del_tail(){

 Node *ptr;

 Node *last;

 ptr=head;

 while(ptr->link !=NULL){

 last=ptr;

 ptr=ptr->link;

 }

 cout<<"Last node is "<<ptr->data<<"\n";

 free(ptr);

 last->link=NULL;

}

• To delete the whole list.

head=NULL;

DS_8

34

• Implementation of delete function of a specific node in a linked list.

void del_pos(int pos){

 Node *ptr;

 Node *before;

 Node *after;

 ptr=head;

 for(int i=0; i<pos-1; i++){

 if(ptr->link !=NULL){

 before=ptr;

 ptr=ptr->link;

 }

 }

 after=ptr->link;

 before->link = after;

 free(ptr);

}

Lab exercise: Implement a function that calculate the summation of all even numbers in a

linked list.

H.W.) Implement a function to find the fifth node in a linked list, then add 50 to its data

field.

H.W.) Implement a function to find the number of even and odd numbers in a linked list.

H.W.) Implement a function to find the number of nodes in a linked list.

H.W.) Implement a function to find the number of positive values and negative values in a

linked list.

DS_9

35

Graphs:

A Graph is a non-linear data structure consisting of nodes and edges. The nodes are
sometimes also referred to as vertices and the edges are lines or arcs that connect any two
nodes in the graph. More formally a Graph can be defined as:

A Graph consists of a finite set of vertices (or nodes) and set of Edges which connect a pair
of nodes.

In the above Graph, the set of vertices V = {0,1,2,3,4} and the set of edges E = {{0,1}, {1,2},
{2,3}, {3,4}, {0,4}, {1,4}, {1,3}}. So, graph G=(V,E)
Graphs are used to solve many real-life problems. Graphs are used to represent networks.
The networks may include paths in a city or telephone network or circuit network. Graphs
are also used in social networks like linkedIn, Facebook. For example, in Facebook, each
person is represented with a vertex(or node). Each node is a structure and contains
information like person id, name, gender, locale etc.

Path: Path represents a sequence of edges between two vertices. In the above example,
path= {(0,1), (1,2)} represents a path from 0 to 2, and path={(0,1), (1,3), (3,2)} represents
the same path.

Graph Representation:
Following two are the most commonly used representations of a graph.
1-Adjacency Matrix: Adjacency Matrix is a 2D array of size V x V where V is the number of
vertices in a graph.

2-Adjacency List: An array of lists is used. Size of the array is equal to the number of vertices.

DS_9

36

• Fully Connected Graph
A graph can be considered as a fully connected graph if all its vertices are connected

with each other with an edge.

• Semi Connected Graph
A graph can be considered as a semi-connected graph if al least one vertex is not
connected with another vertex with an edge.

Graphs types:

1- Undirected Graph: A graph with undirected edges named undirected graph, see the
following graph. In this type, the edges are represented as unordered pair {A,G}
because the edge is bi-directional

The Adjacency matrix for the above undirected graph is as follows:

 A B C D E F G

A 0 1 0 0 0 1 1

B 1 0 1 0 0 0 1

C 0 1 0 1 0 0 0

D 0 0 1 0 1 0 1

E 0 0 0 1 0 1 1

F 1 0 0 0 1 0 0

G 1 1 0 1 1 0 0

C

B

A

G F

D E

DS_9

37

2- Directed Graph: A graph with directed edges named directed graph or digraph, see
the following graph. Here, the edges are represented as ordered pair (A,G)
(G,A) because the edge is un-directional.

The Adjacency matrix for the above directed graph is as follows:

Example: We have the following graph:

1- Is this graph is directed or un-directed?

 A B C D E F G

A 0 1 0 0 0 1 1

B 0 0 1 0 0 0 1

C 0 0 0 1 0 0 0

D 0 0 0 0 1 0 0

E 0 0 0 0 0 0 0

F 0 0 0 0 1 0 0

G 1 0 0 1 0 0 0

C
G F

A

B

D E

A

B F

C D E X Y

DS_9

38

2- Is this graph fully or semi connected graph?

3- Path length?

4- Represent the graph using Adjacency Matrix after transforming it to un-directed

graph.

H.W.: Represent the graph using Adjacency Matrix.

Tree:
A tree is a collection of entities called nodes. Nodes are connected by edges.
Each node contains a value or data, this data can be data of any type. Each
node contains a link to some other nodes that can be called its children. Nodes
may or may not have a child node .
Tree is a non-linear data structure; it is a hierarchical data structure. The
topmost node in the tree is called root of tree.

Now some vocabulary that used for tree data structure.

• Root: The node at the top of the tree is called root. There is only one
root per tree and one path from the root node to any node.

• Parent: Any node(Y) has one edge upward to another node(X), Node X
called parent node.

• Child: The node below a given node connected by its edge downward is
called its child node.

• Sibling: Nodes with the same parent node is called sibling.

• Leaf: The node which does not have any child node is called the leaf
node.

• Height: It is the length of the longest path to a leaf

• Subtree: Subtree represents the descendants of a node that could be a
separated tree.

• Levels: Level of a node represents the generation of a node. If the root
node is at level 0, then its next child node is at level 1, its grandchild is at
level 2, and so on.

• Node degree: It represents the number of children of that nodes.

• Tree degree: The highest node degree of that tree.

DS_9

39

Tree is a graph with no cycle.

 Not a Tree (Graph) Tree

We can convert a graph to a tree by removing all the cycles from a given graph.

A

B F

C D E X Y

A

B C

A

B C

DS_9

40

Root= A
Leafs= C, D, E, X and Y

Subtree =

Nodes Node degree Level

A

B

F

C

D

E

X

Y

Tree Traverse: the process of visiting (checking and/or updating) each node in
a tree data structure, exactly once.

1- Level-by-Level Traversing:
a. Top-Down Traversing: Traversing starts from left to right for each

level.
 Top-Down=A B C D E F G H

B

C D E

F

X Y

E

A

B C

D

F G H

https://en.wikipedia.org/wiki/Tree_(data_structure)

DS_9

41

b. Bottom-Up Traversing: Traversing starts from left to right form
last level up to the first.

 Bottom-Up= F G H D E B C A

NLP Pre-order Traversing: The process is called left-to-right traversal.

 NLP=A B E C D H I J K

Venn Diagram: Is a type of graphic organiser. It is a way of organising complex
relationships visually. They allow abstract ideas to be more visible.

E

A

B C

D

F G H

A

B C

E

D

I K J

H

DS_9

42

Representing Trees using Venn diagram.

1-

2- What is the Venn diagram for the following tree.

Binary Tree: is a tree data structure in which each node has at most
two children, which are referred to as the left child and the right child.

A

B

D

C

E

H

G

I

F

A
B

D F

E
H

I

C G

X

R Z

V A

Y

F I H

https://en.wikipedia.org/wiki/Tree_structure
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Child_node

DS_10

36

Binary Tree: is a tree data structure in which each node has at most
two children, which are referred to as the left child and the right child.

 Not a binary Tree Binary Tree

Array Representation of Binary Tree:

Maximum number of nodes in each level could be calculated as 2L , where L is
the level. So, the maximum number of nodes in level 0 = 20 =1 and so on.

The maximum number of nodes in a binary tree can be calculated as follows:
2h+1-1, where h is tree height.

Maximum no. of nodes=?

The size of array of a binary tree == maximum number of nodes.

1. Root node stores in index1 of array.
2. Left child located in 2*I in the array, where I is the parents index in array.
3. Right child located in 2*I+1 in the array.

B

C D E

F

X Y

A

C B

D E

G H

F

I

DS_10

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Example1: represent the following tree into an array.

H.W.: Convert the following array into a binary tree.
1 2 3 4 5 6 7 8 9 1

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

L M X A \
o

\
o B S R \

o
\
o

\
o

\
o

\
o N \

o T P F \
o

\
o

\
o

\
o

\
o

\
o

\
o

\
o

\
o

\
o K \

o

A general tree could be converted into a binary tree using the following
algorithm.

1. All node in general tree will be nodes in the binary tree.
2. Root of the general tree is the root of the binary tree.
3. Find branch parent t left most child.
4. Connect sibling of each node Left to Right child.
5. Delete all edges from the parent node to its children nodes.

A

C B

D E

X

G N F

DS_10

38

Example2: Convert the following tree to a binary tree.

Example3: Convert the following tree to a binary tree.

X

Y Z R

V A

B C D

A

B F

C D G K J

H I

X

Y

Z

R V

A

B
C

D

DS_10

39

Converting Arithmetic expression into a binary tree:

Expression tree is a binary tree in which each internal node corresponds to
operator and each leaf node corresponds to operand

Example 4: a+b

Example 5: S^(a+b^n)

 Execution
 In computer

Example 6: A=B*C+(8+D*E)/(f*2)

Example 7: X=(a+b/3)^2 + 4/7*b

+
+

a b

^
+

S +

a ^
+

b n

DS_10

40

H.W.:1) X=2*(a-b/c) 2) a+b-((c+d)*e) 3) a+b*(c+d)

	DS_1
	DS_2
	DS_3
	DS_4
	DS_5
	DS_6
	DS_7
	DS_8
	DS_9
	DS_10

