
 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

 جامعة الموصل

 كلية التربية للعلوم الصرفة

 قسم علوم الحاسوب

 هندسة برامجيات

 إعداد: م.م. حسنين علي طالب

 المرحلة الثالثة

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

1.INTRODUCTION TO SOFTWARE ENGINEERING

1.1 Software Definition

What is it?

Computer software

is the product that software engineers design and build.

It encompasses programs that execute within a computer of any size

and architecture,

documents that encompass hard-copy and virtual forms, and data that

combine numbers and text but also includes representations of pictorial,

video, and a udio information.

Who does it? Software engineers build it, and virtually everyone in the

industrialized world uses it either directly or indirectly.

Why is it important? Because it simulates every aspect of our lives and

has become widespread in our commerce, our culture, and our everyday

activities.

What are the steps? You build computer software like you build any

successful product, by applying a process that leads to a high-quality

result that meets the needs of the people who will use the product. You

apply a software engineering approach.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

What is the work product?

-From the point of view of a software engineer, the work product is the

programs, documents, and data that are computer software.

-But from the user’s viewpoint, the work product is the resultant

information that somehow makes the user’s world better.

software is an information transformer producing, managing, acquiring,

modifying, displaying, or

 transmitting information that can be as simple as a single bit or as

complex as a multimedia presentation and we can say also that Software

is:

(1) instructions (computer programs) that when executed provide

desired function and performance, (2) data structures that enable the

programs to effectively manipulate information, and (3) documents that

describe the operation and use of the programs.

1.2 Software Characteristics

To gain an understanding of software (and ultimately an understanding

of software engineering), it is important to examine the characteristics

of software that make it different from other things that human beings

build. When hardware is built, the human creative process (analysis,

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

design, construction, testing) is ultimately translated into a physical

form. If we build a new computer, our initial sketches, formal design

drawings, and prototype evolve into a physical product (chips,circuit

boards, power supplies, etc.).Software is a logical rather than a physical

system element. Therefore, software has characteristics that are

considerably different than those of hardware:

1.2.1 Software is developed or engineered, it is not manufactured in the

classical sense. Although some similarities exist between software

development and hardware manufacture, the two activities are

fundamentally different. In both activities, high quality is achieved

through good design, but the manufacturing phase for hardware can

introduce quality problems that are nonexistent (or easily corrected) for

software.

Both activities are dependent on people, but the relationship between

people applied and work accomplished is entirely different. Both

activities require the construction of a "product" but the approaches are

different.

Software costs are concentrated in engineering. This means that

software projects cannot be managed as if they were manufacturing

projects.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

FIGURE Failure curve for hardware

1.2.2. Software doesn't "wear out."

Figure 1.1 depicts failure rate as a function of time for hardware. The

relationship, often called the "bathtub curve," indicates that hardware

shows relatively high failure rates early in its life (these failures are often

attributable to design or manufacturing defects); defects are corrected

and the failure rate drops to a steady-state level (ideally, quite low) for

some period of time. As time passes, however, the failure rate rises

again as hardware components suffer from the cumulative effects of

dust, vibration, temperature, and many other environmental maladies.

Simply, the hardware begins to wear out. Software is not susceptible to

the environmental maladies that cause hardware to wear out. In theory,

therefore, the failure rate curve for software should take the form of the

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

“idealized curve” shown in Figure 1.2. Undiscovered defects will cause

high failure rates early in the life of a program. However, these are

corrected (ideally, without introducing other errors) and the curve

flattens as shown. The idealized curve is a gross oversimplification of

actual failure models for software. However, the implication is clear—

software doesn't wear out. But it does deteriorate(يتلف) !

This seeming contradiction (كلام متناقض) can best be explained by

considering the “actual curve” shown in Figure 1.2. During its life,

software will undergo) .change (maintenance) (يخضع للتغيير

 As changes are made, it is likely that some new defects will be

introduced, causing the failure rate curve to spike as shown in Figure

1.2. Before the curve can return to the original steady-state failure rate,

another change is requested, causing the curve to spike again. Slowly,

the minimum failure rate level begins to rise—the software is

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

deteriorating due to change. Another aspect of wear illustrates the

difference between hardware and software. When a hardware

component wears out, it is replaced by a spare part. There are no

software spare parts. Every software failure indicates an error in design

or in the process through which design was translated into machine

executable code. Therefore, software maintenance involves

considerably more complexity than hardware maintenance.

3. Although the industry is moving toward component-based assembly,

most software continues to be custom built.

 Consider the manner)أسلوب) in which the control hardware for a

computer-based product is designed and built.

 The design engineer draws a simple schematic (مخطط) of the

digital circuitry, does some fundamental analysis to assure that

proper function will be achieved, and then goes to the shelf

where catalogs of digital components exist.

 Each integrated circuit (called an IC or a chip) has a part number,

a defined and validated function, a well-defined interface, and a

standard set of integration guidelines. After each component is

selected, it can be ordered off the shelf.

 As an engineering discipline evolves, a collection of standard

design components is created. Standard screws and off-the-shelf

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

integrated circuits are only two of thousands of standard

components that are used by mechanical and electrical engineers

as they design new systems.

 The reusable components have been created so that the

engineer can concentrate on the truly innovative elements of a

design, that is, the parts of ,the design that represent something

new.

 In the hardware world, component reuse is a natural part of the

engineering process. In the software world, it is some-thing that

has only begun to be achieved on a broad scale.

A software component should be designed and implemented so that it

can be reused in many different programs. In the 1960s, we built

scientific subroutine libraries that were reusable in a broad array of

engineering and scientific applications. These subroutine libraries reused

well-defined algorithms in an effective manner but had a limited domain

of application. Today, we have extended our view of reuse to encompass

not only algorithms but also data structure. Modern reusable

components encapsulate both data and the processing applied to the

data, enabling the software engineer to create new applications from

reusable parts. For example, today's graphical user interfaces are built

using reusable components that enable the creation of graphics

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

windows, pull-down menus, and a wide variety of interaction

mechanisms. The data structure and processing detail required to build

the interface are contained with a library of reusable components for

interface construction.

1.3 Software Applications

Software may be applied in any situation for which a prespecified set of

procedural steps (i.e., an algorithm) has been defined (notable

exceptions to this rule are expert system software and neural network

software). Information content and determinacy are important factors in

determining the nature of a software application. Content refers to the

meaning and form of incoming and outgoing information. For example,

many business applications use highly structured input data (a database)

and produce formatted “reports.” Software that controls an automated

machine (e.g., a numerical control) accepts discrete data items with

limited structure and produces individual machine commands in rapid

succession.

Information determinacy refers to the predictability of the order and

timing of information. An engineering analysis program accepts data

that have a predefined order, executes the analysis algorithm(s) without

interruption, and produces resultant data in report or graphical format.

Such applications are determinate. A multiuser operating system, on the

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

other hand, accepts inputs that have varied content and arbitrary timing,

executes algorithms that can be interrupted by external conditions, and

produces output that varies as a function of environment and time.

Applications with these characteristics are indeterminate.

It is somewhat difficult to develop meaningful generic categories for

software applications. As software complexity grows, neat

compartmentalization disappears. The following software areas indicate

the breadth of potential applications:

System software. System software is a collection of programs written to

service other programs. Some system software (e.g., compilers, editors,

and file management utilities) process complex, but determinate,

information structures. Other systems applications (e.g., operating

system components, drivers, telecommunications processors) process

largely indeterminate data. In either case, the system software area is

characterized by heavy interaction with computer hardware; heavy

usage by multiple users; concurrent operation that requires scheduling,

resource sharing, and sophisticated process management; complex data

structures; and multiple external interfaces.Real-time software.

Software that monitors/analyzes/controls real-world events as they

occur is called real time. Elements of real-time software include a data

gath- ering component that collects and formats information from an

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

external environ-ment, an analysis component that transforms

information as required by the application, a control/output component

that responds to the external environment, and a monitoring

component that coordinates all other components so that real-time

response (typically ranging from 1 millisecond to 1 second) can be

maintained.

Business software. Business information processing is the largest single

software application area. Discrete "systems" (e.g., payroll, accounts

receivable/payable, inventory) have evolved into management

information system (MIS) software that accesses one or more large

databases containing business information. Applications in this area

restructure existing data in a way that facilitates business operations or

management decision making. In addition to conventional data

processing application, business software applications also encompass

interactive computing (e.g., point-of-sale transaction processing).

Engineering and scientific software. Engineering and scientific software

have been characterized by "number crunching" algorithms.

Applications range from astronomy to volcanology, from automotive

stress analysis to space shuttle orbital dynamics, and from molecular

biology to automated manufacturing. However, modern applications

within the engineering/scientific area are moving away from

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

conventional numerical algorithms. Computer-aided design, system

simulation, and other interactive applications have begun to take on

real-time and even system software characteristics.

Embedded software. Intelligent products have become commonplace in

nearly every consumer and industrial market. Embedded software

resides in read-only memory and is used to control products and

systems for the consumer and industrial markets. Embedded software

can perform very limited and esoteric functions (e.g., keypad control for

a microwave oven) or provide significant function and control capability

(e.g., digital functions in an automobile such as fuel control, dashboard

displays, and braking systems).Personal computer software. The

personal computer software market has burgeoned over the past two

decades. Word processing, spreadsheets, computer graphics,

multimedia, entertainment, database management, personal and

business financial applications, external network, and database access

are only a few of hundreds of applications.

Web-based software. The Web pages retrieved by a browser are

software that incorporates يدمج executable instructions (e.g., CGI, HTML,

Perl, or Java), and data (e.g.,hypertext and a variety of visual and audio

formats). In essence, the network becomes a massive computer

providing an almost unlimited software resource that can be accessed by

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

anyone with a modem. Artificial intelligence software. Artificial

intelligence (AI) software makes use of nonnumerical algorithms to solve

complex problems that are not amenable سهلة الانقياد to computation or

straightforward analysis. Expert systems, also called knowledge-based

systems, pattern recognition (image and voice), artificial neural

networks, theorem proving, and game playing are representative of

applications within this category.

1.4 SOFTWARE CRISIS

 The word crisis is defined in Dictionary as “a turning point in the

course of anything; decisive time الحاسم الوقت , stage or event.” Yet, in

terms of overall software quality and the speed with which computer-

based systems and products are developed, there has been no "turning

point," no "decisive time," only slow, evolutionary change, punctuated

 التخصصات technological changes in disciplines انفجاري by explosive تتخللها

associated with software.

The word crisis has another definition: "the turning point in the course

of a disease, when it becomes clear whether the patient will live or die."

This definition may give us a clue دليل about the real nature of the

problems that have plagued مرض فيه ينتش software development.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

What we really have might be better characterized as a chronic affliction

المزمنة الاصابة .2 The word affliction is defined as "anything causing pain or

distress محنة مضايقة." But the definition of the adjective chronic is the

key to our argument برهان: "lasting a long time or recurring often المتكررة

الأحيان من كثير ف ; continuing indefinitely مسمى غير أجل إلى استمرار ." It is far

more accurate to describe the problems we have endured تحملت in the

software business as a chronic affliction than a crisis.

Regardless of what we call it, the set of problems that are encountered

in the development of computer software is not limited to software that

"doesn't function properly." Rather, the affliction encompasses

problems associated with how we develop software, how we support a

growing volume of existing software, and how we can expect to keep

pace with a growing demand for more software.

We live with this affliction to this day—in fact, the industry prospers in

spite رغم of it.

And yet, things would be much better if we could find and broadly apply

a cure شفاء .

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

1.5 Characteristics of a Well-engineered Software

To define a well-engineered software, one takes a look at specific

characteristics that the software exhibits. Some of them are enumerated

below:

•Usability

 It is the characteristic of the software that exhibits ease with which

the user communicates with the system.

•Portability

 It is the capability of the software to execute in different platforms and

architecture.

•Reusability

 It is the ability of the software to transfer from one system to another.

•Maintainability

 It is the ability of the software to evolve تتطور and adapt تكيف to

changes over time. It is characterized by the ease of upgrading and

maintaining.

•Dependability

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

 It is the characteristic of the software to be reliable موثوق, secure and

safe.

•Efficiency

 It is the capability of the software to use resources efficiently.

1.6 SOFTWARE ENGINEERING DEFINITION

Definition of Software engineer: A person who designs and programs

system-level software, such as operating systems, database

management systems (DBMSs) and embedded systems. The title is often

used for programmers in the software industry who create commercial

software packages, whether they be system level or application level.

While Software engineering is an engineering discipline)فرع)that is

concerned
 with all aspect of software production from the early معن

stages of system specification through to maintaining the system after it

has gone into use. In this definition, there are two key phrases:

1. Engineering discipline Engineers make things work. They apply

theories, methods, and tools where these are appropriate)مناسب(.

However, they use them selectively and always try to discover solutions

to problems even when there are no applicable theories and methods.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Engineers also recognize that they must work to organizational and

financial constraints (محددات) so they look for solutions within these

constraints.

2. All aspects of software production Software engineering is not just

concerned with the technical processes of software development. It also

includes activities such as software project management and the

development of tools, methods, and theories to support software

production.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

1.7 The goals of software engineering.

1. Costs: software engineering must make cost of software development

less.

2. Efficiency. The degree to which the software makes optimal use of

system resources as indicated by the following sub attributes: time

behavior, resource behavior. And this software must work in a way

without harming Hardwar like CPU or Memory.

3.Portability. Effort required to transfer the program from one hardware

and/or software system environment to another.

4. Maintainability. Ability to locate and fix an error in a program and we

can say it is The ease with which repair may be made to the software

without needing additional unnecessary cost.

5. Reliability. The amount of time that the software is available for use.

6. Delivery on Time: by Using software engineering concepts, Software

must delivered in exact time that the software engineer assigned during

software designing.

7.The software should offer appropriate ملائم user interface.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

2. SOFTWARE DEVELOPMENT MODELS:

2.1 THE PROTOTYPING MODEL

Often, a customer defines a set of general objectives for software but

does not identify detailed input, processing, or output requirements. In

other cases, the developer may be unsure of the efficiency of an

algorithm, the adaptability of an operating system, or the form that

human/machine interaction should take. In these, and many other

situations, a prototyping paradigm may offer the best approach.

The prototyping paradigm (Figure 2.1) begins with requirements

gathering. Developer and customer meet and define the overall

objectives for the software, identify whatever requirements are known,

and outline areas where further definition is mandatory. A "quick

design" then occurs. The quick design focuses on a representation of

those aspects of the software that will be visible to the customer/user

(e.g., input approaches and output formats).

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

The quick design leads to the construction of a prototype. The prototype

is evaluated by the customer/user and used to refine requirements for

the software to be developed. Iteration occurs as the prototype is tuned

to satisfy the needs of the customer, while at the same time enabling

the developer to better understand what needs to be done, i.e. either

you built Prototype and throw it away "if it's not satisfy customer

needs" and plan in advance to build a throwaway, or give this

throwaway to customers".

Ideally, the prototype serves as a mechanism for identifying software

requirements.

You will do that. The only question is whether to plan in advance to build

a throwaway, or to promise to deliver the throwaway to customers . . .

FIGURE 2.1

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

The prototype can serve as "the first system." The one that Brooks

recommends we throwaway. But this may be an idealized view. It is true

that both customers and developers like the prototyping paradigm.

Users get a feel for the actual system and developers get to build

something immediately. Yet, prototyping can also be problematic for the

following reasons:

1. The customer sees what appears to be a working version of the

software, unaware that no one has considered over all software quality

or long-term maintainability. When informed that the product must be

rebuilt so that high levels of quality can be maintained, the customer

demands that "a few fixes" be applied to make the prototype a working

product. Too often, software development management relents
يرجع ف

 .قراره

2. The developer often makes implementation compromises ،حلول وسيطة

غير in order to get a prototype working quickly. An inappropriate تسوية

 operating system or programming language may be used simply ملائم

because it is available and known; an inefficient algorithm may be

implemented simply to demonstrate capability.

After a time, the developer may become familiar with these choices and

forget all the reasons why they were inappropriate. The less-than-ideal

choice has now become an integral part of the system جزءا لايتجزأ من النظام.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Although problems can occur, prototyping can be an effective paradigm

for software engineering. The key is to define the rules of the game at

the beginning; that is, the customer and developer must both agree that

the prototype is built to serve as a mechanism for defining

requirements. It is then discarded التخلص منها (at least in part) and the

actual software is engineered with an eye toward quality and

maintainability.

2.2 THE LINEAR SEQUENTIAL MODEL

 Sometimes called the classic life cycle or the waterfall model, the

linear sequential model suggests a systematic , نظام sequential

approach to software development that begins at the system level and

progresses through analysis, design, coding, testing, and support. Figure

2.2 illustrates the linear sequential model for software engineering.

FIGURE 2.1

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Modeled after a conventional engineering cycle, the linear قليديت

sequential model encompasses the following activities :

System/information engineering and modeling. Because software is

always part of a larger system (or business), work begins by establishing

requirements for all system elements and then allocating some subset of

these requirements to software. This system view is essential when

software must interact with other elements such as hardware, people,

and databases. System engineering and analysis encompass

requirements gathering at the system level with a small amount of top

level design and analysis. Information engineering encompasses

requirements gathering at the strategic business level and at the

business area level .

Software requirements analysis: The requirements gathering process is

intensified and focused specifically on software. To understand يشدد

the nature of the program(s) to be built, the software engineer

("analyst") must understand the information domain for the software,

as well as required function, behavior, performance, and interface.

Requirements for both the system and the software are documented

and reviewed . with the customer وتفحص تعاين

Design: Software design is actually a multistep process that focuses on

four distinct attributes of a program: data structure, software

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

architecture, interface representations, and procedural (algorithmic)

detail. The design process translates requirements into a representation

of the software that can be assessed for quality before coding begins.

Like requirements, the design is documented and becomes part of the

software configuration .

Code generation: The design must be translated into a machine-

readable form. The code generation step performs this task. If design is

performed in a detailed manner , code generation can be accomplished

mechanistically .

Testing: Once code has been generated, program testing begins. The

testing process focuses on the logical internals of the software, ensuring

that all statements have been tested, and on the functional externals;

that is, conducting tests to uncover errors and ensure that defined input

will produce actual results that agree with required results.

Support: Software will undoubtedly undergo change (يقينا، شك غير من)

after it is delivered to the customer (a possible exception is embedded

software). Change will occur because errors have been encountered,

because the software must be adapted to accommodate changes in its

external environment (e.g., a change required because of a new

operating system or peripheral device), or because the customer

requires functional or performance enhancements. Software

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

support/maintenance reapplies each of the preceding phases to an

existing program rather than a new one .

 The linear sequential model is the oldest and the most widely used

paradigm for software engineering. However, criticism of the انتقاد

paradigm has caused even active supporters to question its efficacy

[HAN95]. Among the problems that are sometimes encountered when

the linear sequential model is applied are :

1. Real projects rarely follow the sequential flow that the model

proposes. Although the linear model can accommodate iteration,

it does so indirectly. As a result, changes can cause confusion as

the project team proceeds.

2. It is often difficult for the customer to state all requirements

explicitly. The linear sequential model requires this and has

difficulty accommodating the natural uncertainty that exists at the

beginning of many projects.

3. The customer must have patience. A working version of the

program(s) will not be available until late in the project time-span.

A major blunder, if undetected until the working program is

reviewed, can be disastrous .

 In an interesting analysis of actual projects, found that the linear

nature of the classic life cycle leads to “blocking states” in which some

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

project team members must wait for other members of the team to

complete dependent tasks. In fact, the time spent waiting can exceed

 the time spent on productive work! The blocking state tends to be يفوق

more prevalent at the beginning and end of a linear sequential process.

Each of these problems is real. However, the classic life cycle paradigm

has a definite and important place in software engineering work. It

provides a template into which methods for analysis, design, coding,

testing, and support can be placed. The classic life cycle remains a widely

used procedural model for software engineering.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

2.3 THE INCREMENTAL MODEL

The incremental model combines elements of the linear sequential
model (applied repetitively) with the iterative philosophy of prototyping.

 Referring to Figure below, the incremental model applies linear
sequences in a staggered fashion as calendar time progresses.

 Each linear sequence produces a deliverable “increment” of the
software. For example, word-processing software developed using the
incremental paradigm might deliver basic file management, editing, and
document production functions in the first increment; more
sophisticated editing and document production capabilities in the
second increment; spelling and grammar checking in the third
increment; and advanced page layout capability in the fourth
increment.

It should be noted that the process flow for any increment can
incorporate the prototyping paradigm.

 When an incremental model is used, the first increment is often a core
product. That is, basic requirements are addressed, but many
supplementary features (some known, others unknown) remain
undelivered. The core product is used by the customer (or undergoes
detailed review).

 As a result of use and/or evaluation, a plan is developed for the next
increment. The plan addresses the modification of the core product to
better meet the needs of the customer and the delivery of additional
features and functionality. This process is repeated following the
delivery of each increment, until the complete product is produced.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

The incremental process model, like prototyping and other evolutionary
approaches, is iterative in nature. But unlike prototyping, the
incremental model focuses on the delivery of an operational product
with each increment.

Early increments are stripped down versions of the final product, but
they do provide capability that serves the user and also provide a
platform for evaluation by the user.

 Incremental development is particularly useful when staffing is
unavailable for a complete implementation by the business deadline
that has been established for the project. Early increments can be
implemented with fewer people. If the core product is well received,
then additional staff (if required) can be added to implement the next
increment. In addition, increments can be planned to manage technical
risks.

For example, a major system might require the availability of new
hardware that is under development and whose delivery date is
uncertain. It might be possible to plan early increments in a way that
avoids the use of this hardware, thereby enabling partial functionality to
be delivered to end-users without inordinate delay.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

2.4 THE SPIRAL MODEL

The spiral model, is an evolutionary software process model that couples
the iterative nature of prototyping with the controlled and systematic
aspects of the linear sequential model. It provides the potential for rapid
development of incremental versions of the software. Using the spiral
model, software is developed in a series of incremental releases. During
early iterations, the incremental release might be a paper model or
prototype. During later iterations, increasingly more complete versions
of the engineered system are produced.
A spiral model is divided into a number of framework activities, also
called task regions.6 Typically, there are between three and six task
regions. Figure 2.8 depicts a spiral model that contains six task regions:

Customer communication—tasks required to establish effective
communication between developer and customer.
• Planning—tasks required to define resources, timelines, and other
projectrelated information.
• Risk analysis—tasks required to assess both technical and
management risks.
• Engineering—tasks required to build one or more representations of
the application.
• Construction and release—tasks required to construct, test, install,
and provide user support (e.g., documentation and training).
•Customer evaluation—tasks required to obtain customer feedback
based on evaluation of the software representations created during the
engineering stage and implemented during the installation stage.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Each of the regions is populated by a set of work tasks, called a task set,
that are adapted to the characteristics of the project to be undertaken.
For small projects, the number of work tasks and their formality is low.
For larger, more critical projects, each task region contains more work
tasks that are defined to achieve a higher level of formality.
As this evolutionary process begins, the software engineering team
moves around the spiral in a clockwise direction, beginning at the
center. The first circuit around the spiral might result in the
development of a product specification; subsequent passes around the
spiral might be used to develop a prototype and then progressively more
sophisticated versions of the software. Each pass through the planning
region results in adjustments to the project plan. Cost and schedule are
adjusted based on feedback derived from customer evaluation. In
addition, the project manager adjusts the planned number of iterations
required to complete the software.
Unlike classical process models that end when software is delivered, the
spiral model can be adapted to apply throughout the life of the
computer software. An alternative view of the spiral model can be
considered by examining the project entry point axis, also shown in The
Figure Each cube placed along the axis can be used to represent the
starting point for different types of projects. A “concept development
project” starts at the core of the spiral and will continue (multiple
iterations occur along the spiral path that bounds the central shaded

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

region) until concept development is complete. If the concept is to be
developed into an actual product, the process
proceeds through the next cube (new product development project
entry point) and a “new development project” is initiated. The new
product will evolve through a number of iterations around the spiral,
following the path that bounds the region that has somewhat lighter
shading than the core. In essence, the spiral, when characterized in this
way, remains operative until the software is retired. There are times
when the process is dormant, but whenever a change is initiated, the
process starts at the appropriate entry point (e.g., product
enhancement).
The spiral model is a realistic approach to the development of large-
scale systems and software. Because software evolves as the process
progresses, the developer and customer better understand and react to
risks at each evolutionary level. The spiral model uses prototyping as a
risk reduction mechanism but, more important, enables the developer
to apply the prototyping approach at any stage in the evolution of the
product. It maintains the systematic stepwise approach suggested by the
classic life cycle but incorporates it into an iterative framework that
more realistically reflects the real world. The spiral model demands a
direct consideration of technical risks at all stages of the project and, if
properly applied, should reduce risks before they become problematic.
But like other paradigms, the spiral model is not a panacea. It may be
difficult to convince customers (particularly in contract situations) that
the evolutionary approach is controllable. It demands considerable risk
assessment expertise and relies on this expertise for success. If a major
risk is not uncovered and managed, problems will undoubtedly occur.
Finally, the model has not been used as widely as the linear sequential
or prototyping paradigms.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

3.1 REQUIREMENTS ANALYSIS

Requirements analysis is a software engineering task that bridges the

gap between system level requirements engineering and software

design (Figure below).

Requirements engineering activities result in the specification of

software’s operational characteristics (function, data, and behavior),

indicate software's interface with other system elements, and establish

constraints that software must meet.

Requirements analysis allows the software engineer (sometimes called

analyst in this role) to refine the software allocation and build models of

the data, functional, and behavioral domains that will be treated by

software.

Requirements analysis provides the software designer with a

representation of information, function, and behavior that can be

translated to data, architectural, interface, and component-level

designs. Finally, the requirements specification provides the developer

and the customer with the means to assess quality once software is

built.

Software requirements analysis may be divided into five areas of effort:

 (1) problem recognition, (2) evaluation and synthesis, (3) modeling, (4)

specification, and (5) review.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Analysis principles:

 All analysis methods are related by a set of operational principles:

1. The information domain of a problem must be represented and

understood.

 2. The functions that the software is to perform must be defined.

3. The behavior of the software (as a consequence of external events)

must be represented.

4. The models that depict information, function , and behavior must be

partitioned in a manner that uncovers detail in a layered (or hierarchical)

fashion.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Analysis modeling:

At a technical level, software engineering begins with a series of

modeling tasks that lead to a complete specification of requirements

and a comprehensive design representation for the software to be built.

Analysis Modeling Objectives

 The analysis model must achieve three primary objectives: (1) to

describe what the customer requires, (2) to establish a basis for the

creation of a software design, and (3) to define a set of requirements

that can be validated once the software is built.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

3.2 STRUCTURED ANALYSIS

Is a model building activity, using notation that satisfied the operational
analysis principles, (that suggest that the information, functional, and
behavioral domains of software can be partitioned). we create models
that depict information (data and control) content and flow, we partition
the system functionality and behaviorally, and we depict the essence of
what must be built.

THE ELEMENTS OF THE ANALYSIS MODEL

1-Data Dictionary
At the core of the model lies the data dictionary—a repository that
contains descriptions of all data objects consumed or produced by the
software.

2-The entity relation diagram (ERD)
Three different diagrams surround the core. The entity relation diagram
(ERD) depicts relationships between data objects. The ERD is the
notation that is used to conduct the data modeling activity. The
attributes of each data object noted in the ERD can be described using a
data object description.

3-The data flow diagram (DFD)

The data flow diagram (DFD) serves two purposes: (1) to provide an
indication of how data are transformed as they move through the
system and (2) to depict the functions (and subfunctions) that transform
the data flow. The DFD provides additional information that is used
during the analysis of the information domain and serves as a basis for
the modeling of function. A description of each function presented in
the DFD is contained in a process specification (PSPEC).

4-The state transition diagram (STD)

The state transition diagram (STD) indicates how the system behaves as
a consequence of external events. To accomplish this, the STD
represents the various modes of behavior (called states) of the system
and the manner in which transitions are made from state to state. The

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

STD serves as the basis for behavioral modeling. Additional information
about the control aspects of the software is contained in the control
specification (CSPEC).

FIGURE The structure of the analysis model

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

3.3 DATA MODELING

Data modeling answers a set of specific questions that are relevant to
any data processing application.
What are the primary data objects to be processed by the system?
What is the composition of each data object and what attributes
describe the object? Where do the the objects currently reside? What
are the relationships between each object and other objects?
What are the relationships between the objects and the processes that
transform them?

Data Modeling
To answer these questions, data modeling methods make use of the
entity relationship diagram. The ERD enables a software engineer to
identify data objects and their relationships using a graphical notation. In
the context of structured analysis, the ERD defines all data that are
entered, stored, transformed, and produced within an application. The
entity relationship diagram focuses solely on data (and therefore
satisfies the first operational analysis principles), representing a "data
network" that exists for a given system. The ERD is especially useful for
applications in which data and the relationships that govern data are
complex. Unlike the data flow diagram (discussed in Section 12.4 and
used to represent how data are transformed), data modeling considers
data independent of the processing that transforms the data.

The data model consists of three interrelated pieces of information:
the data object, the attributes that describe the data object, and the
relationships that connect data objects to one another.

Data object:

Data objects. A data object is a representation of almost any composite
information that must be understood by software. By composite
information, we mean something that has a number of different
properties or attributes. Therefore, width (a single value) would not be a
valid data object, but dimensions (incorporating height, width, and
depth) could be defined as an object.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

 A data object can be an external entity (e.g., anything that produces or
consumes information), a thing (e.g., a report or a display), an
occurrence (e.g., a telephone call) or event (e.g., an alarm), a role (e.g.,
salesperson), an organizational unit (e.g., accounting department), a
place (e.g., a warehouse), or a structure (e.g., a file). For example, a
person or a car (Figure 12.2) can be viewed as a data object in the sense
that either can be defined in terms of a set of attributes. The data object
description incorporates the data object and all of its attributes.

Attributes:

Attributes define the properties of a data object and take on one of
three different characteristics. They can be used to (1) name an instance
of the data object, (2) describe the instance, or (3) make reference to
another instance in another table. In addition, one or more of the
attributes must be defined as an identifier—that is, the identifier
attribute becomes a "key" when we want to find an instance of the data
object. In some cases, values for the identifier(s) are unique, although
this is not a requirement. Referring to the data object car, a reasonable
identifier might be the ID number.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Relationships:

Data objects are connected to one another by relationships in different
ways. And this relationship can be represented using the simple notation
and establishing connection between two objects.
Relationships:
There are two main points in relationships that must be taken into
consideration:
Cardinality: The number of times items appear in a relationship.
Modality: Is the relationship obligatory or optional?
Cardinality: Represents the number of times an object appears in a
particular relationship and takes two values, either one or many, for
example:
One to one (1:1)
One to many (1:m)
Many to many (m:n)
One to one (1:1)
One to many (1:m)
Many to many (m:n)
Modality: it is zero in case the relationship (optional) is not needed and
it is one if the relationship is mandatory (necessary).

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

FIGURE Cardinality and Modality

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Entity-Relationship Diagrams

 A company has several departments. Each department has a supervisor

and at least one employee. Employees must be assigned to at least one,

but possibly more departments. At least one employee is assigned to a

project, but an employee may be on vacation and not assigned to any

projects. The important data fields are the names of the departments,

projects, supervisors and employees, as well as the supervisor and

employee number and a unique project number.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Supervisor:

Each department has one supervisor.

Department:

Each supervisor has one department.

Each employee can belong to one or more departments

Employee:

Each department must have one or more employees

Each project must have one or more employees

Project:

Each employee can have 0 or more projects.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Greating DFD

A data flow diagram is a graphical representation that depicts

information flow and the transforms that are applied as data move from

input to output. The basic form of a data flow diagram, also known as a

data flow graph or a bubble chart, is illustrated in Figure below.

Information Flow Model

The data flow diagram may be used to represent a system or software at

any level of abstraction.

In fact, DFDs may be partitioned into levels that represent increasing

information flow and functional detail. Therefore, the DFD provides a

mechanism for functional modeling as well as information flow

modeling.

In so doing, it satisfies the second operational analysis principle (i.e.,

creating a functional model).

A level 0 DFD, also called a fundamental system model or a context

model, represents the entire software element as a single bubble with

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

input and output data indicated by incoming and outgoing arrows,

respectively.

 Additional processes (bubbles) and information flow paths are

represented as the level 0 DFD is partitioned to reveal more detail. For

example, a level 1 DFD might contain five or six bubbles with

interconnecting arrows.

Each of the processes represented at level 1 is a subfunction of the

overall system.

DFD graphical notation must be augmented with descriptive text.

Information flow refinements تحسينات

التدوين الرسوم تعزيز يجب DFD نص وصفب .

A process specification (PSPEC) can be used to specify the processing

details implied by a bubble within a DFD.

The process specification describes the input to a function, the algorithm

that is applied to transform the input, and the output that is produced.

In addition, the PSPEC indicates restrictions and limitations imposed on

the process (function), performance characteristics that are relevant to

the process, and design constraints that may influence the way in which

the process will be implemented.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Creating a Data Flow Diagram:

A few simple guidelines can aid immeasurably during derivation of a

data flow diagram:

(1) The level 0 data flow diagram should depict the software/system as a

single bubble;

(2) Primary input and output should be carefully noted

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Software design

Design engineering:

Design engineering encompasses the set of principles, concepts, and

practices that lead to the development of a high-quality system or

product. The goal of design is to create a model of software that will

implement all customer requirements correctly and bring delight to

those who use it.Design engineering for computer software changes

continually as new methods, better analysis, and broader understanding

evolve.

Software design:

Software design sits at the technical kernel of software engineering

and is applied regardless of the software process model that is used.

Beginning once software requirements have been analyzed and

specified, software design is the first of three technical activities—

design, code generation, and test—that are required to build and verify

the software. Each activity transforms information in a manner that

ultimately results in validated computer software.

During design, progressive refinements of data structure, architecture,

interfaces, and

Data design :

Data design translates the data objects defined in the analysis model

into data structures that reside within the software. The attributes that

describe the object, the relationships between data objects and their

use within the program all influence the choice of data structures.

Like other software engineering activities, data design (sometimes

referred to as data architecting) creates a model of data and/or

information that is represented at a high level of abstraction (the

customer/user’s view of data).

The data objects defined during software requirements analysis are

modeled using entity/relationship diagrams and the data dictionary. The

data design activity translates these elements of the requirements

model into data structures at the software component level and, when

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

necessary, a database architecture or a data warehouse at the

application level.

 (2) Architectural design:

The architectural design defines the relationship between major

structural elements of the software. It depicts the structure and

organization of software components, their properties, and the

connections between them.

Software components include program modules and the various data

representations that are manipulated by the program. Therefore, data

design is an integral part of the derivation of the software architecture.

The primary objective of architectural design is to develop a modular

program structure and represent the control relationship between

modules, in addition, architectural design melds program structure and

data structure, defining interface that enables data flow throughout the

program.

The architectural design for software is the equivalent to the floor plan

of a house. The floor plan depicts the overall layout of the rooms, their

size, shape, and relationship to one another, and the doors and windows

that allow movement into and out of the rooms. The floor plan gives us

an overall view of the house. Architectural design elements give us an

overall view of the software.

(3) component-level design:

component-level design, also called procedural design, occurs after data,

architectural, and interface designs have been established.

The component-level design transforms structural elements of the

software architecture into a procedural description of software

components. Information obtained from the PSPEC, CSPEC, and STD

serve as the basis for component design.

Component-level design depicts the software at a level of abstraction

that is very close to code.At the component level, the software engineer

must represent data structures, interfaces, and algorithms in sufficient

detail to guide in the generation of programming language source code.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

To accomplish this, the designer uses one of a number of design

notations that represent component-level detail in either graphical,

tabular, or text- based formats.

Structured programming is a procedural design philosophy that

constrains the number and type of logical constructs used to represent

algorithmic detail. The intent of structured programming is to assist the

designer in defining algorithms that are less complex and therefore

easier to read, test, and maintain.

Figure : Translating the analysis model into a software design

Component-level design techniques: Component-level design depicts

the software at a level of abstraction that is very close to code.

At the component level, the software engineer must represent data

structures, interfaces, and algorithms in sufficient detail to guide in the

generation of programming language source code.

To accomplish this, the designer uses one of a number of design

notations that represent component-level detail, the following are some

of these techniques: a. Structured programming: Structured

programming is a design technique that constrains logic flow to a three

constructs: sequence, condition, and repetition, used to represent

algorithmic detail.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

The intent of structured programming is to assist the designer to limit

the procedural design of software to a small number of predictable

operations, defining algorithms that are less complex and therefore

easier to read, test, and maintain.

b. Graphical design notation: The activity diagram allows a designer to

represent sequence, condition, and repetition-all elements of structured

programming-by using a flowchart. "A picture is worth a thousand

words," but it's rather important to know which picture and which 1000

words.

There is no question that graphical tools, such as the flowchart, , provide

useful pictorial patterns that readily depict procedural detail. However,

if graphical tools are misused, the wrong picture may lead to the wrong

software.

Figure Flowchart constructs

c. Tabular design notation: In many software applications, a module may

be required to evaluate a complex combination of conditions and select

appropriate actions based on these conditions.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Decision tables provide a notation that translates actions and conditions

(described in a processing narrative) into a tabular form.

The table is difficult to misinterpret and may even be used as a machine

readable input to a table driven algorithm.

Decision table organization is illustrated in Figure below Referring to the

figure, the table is divided into four sections. The upper left-hand

quadrant contains a list of all conditions.

The lower left-hand quadrant contains a list of all actions that are

possible based on combinations of conditions.

The right-hand quadrants form a matrix that indicates condition

combinations and the corresponding actions that will occur for a specific

combination. Therefore, each column of the matrix may be interpreted

as a processing rule.

Figure Resultant decision table

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Effective Modular Design

Modularity has become an accepted approach in all engineering

disciplines. A modular design reduces complexity, facilitates change (a

critical aspect of software maintainability), and results in easier

implementation by encouraging parallel development of different parts

of a system.

1. Functional Independence

The concept of functional independence is a direct outgrowth of

modularity and the concepts of abstraction and information hiding.

functional independence is a key to good design, and design is the key to

software quality.

2. Cohesion

A cohesive module performs a single task within a software procedure,

requiring little interaction with procedures being performed in other

parts of a program. Stated simply, a cohesive module should (ideally) do

just one thing.

3. Coupling

 Coupling is a measure of interconnection among modules in a software

structure. Coupling depends on the interface complexity between

modules, the point at which entry or reference is made to a module, and

what data pass across the interface. Coupling is a qualitative indication

of the degree to which a module is connected to other modules and to

the outside world.

Program Design Language (PDL)

Program design language (PDL), also called structured English or

pseudocode, is "a pidgin language in that it uses the vocabulary of one

language (i.e., English) and the overall syntax of another (i.e., a

structured programming language)".

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

At first glance PDL looks like a modern programming language. The

difference between PDL and a real programming language lies in the use

of narrative text (e.g., English) embedded directly within PDL

statements.

Given the use of narrative text embedded directly into a syntactical

structure, PDL cannot be compiled (at least not yet). However, PDL tools

currently exist to translate PDL into a programming language “skeleton”

and/or a graphical representation (e.g., a flowchart) of design. These

tools also produce nesting maps, a design operation index, cross-

reference tables, and a variety of other information.

A program design language may be a simple transposition of a language

such as Ada or C. Alternatively, it may be a product purchased

specifically for procedural design.

PDL Example

To illustrate the use of PDL, we present an example of a procedural

design for the SafeHome security system software. The system monitors

alarms for fire, smoke, burglar, water, and temperature (e.g., furnace

breaks while homeowner is away during winter) and produces an alarm

bell and calls a monitoring service, generating a voice-synthesized

message. In the PDL that follows, we illustrate some of the important

constructs noted in earlier sections.

Recall that PDL is not a programming language. The designer can adapt

as required without worry of syntax errors. However, the design for the

monitoring software would have to be reviewed (do you see any

problems?) and further refined before code could be written. The

following PDL defines an elaboration of the procedural design for the

security monitor component.

PROCEDURE security.monitor;

INTERFACE RETURNS system.status;

TYPE signal IS STRUCTURE DEFINED

 name IS STRING LENGTH VAR;

 address IS HEX device location;

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

 bound.value IS upper bound SCALAR;

 message IS STRING LENGTH VAR;

END signal TYPE;

TYPE system.status IS BIT (4);

TYPE alarm.type DEFINED

smoke.alarm IS INSTANCE OF signal;

fire.alarm IS INSTANCE OF signal;

water.alarm IS INSTANCE OF signal;

temp.alarm IS INSTANCE OF signal;

burglar.alarm IS INSTANCE OF signal;

TYPE phone.number IS area code + 7-digit number;

•
•
•
initialize all system ports and reset all hardware;

CASE OF control.panel.switches (cps):

 WHEN cps = "test" SELECT

 CALL alarm PROCEDURE WITH "on" for test.time in seconds;

 WHEN cps = "alarm-off" SELECT

 CALL alarm PROCEDURE WITH "off";

 WHEN cps = "new.bound.temp" SELECT

 CALL keypad.input PROCEDURE;

WHEN cps = "burglar.alarm.off" SELECT deactivate signal [burglar.alarm];

•
•
•
DEFAULT none;
ENDCASE
REPEAT UNTIL activate.switch is turned off
reset all signal.values and switches;

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

DO FOR alarm.type = smoke, fire, water, temp, burglar;
 READ address [alarm.type] signal.value;
 IF signal.value > bound [alarm.type]
 THEN phone.message = message [alarm.type];
 set alarm.bell to "on" for alarm.timeseconds;

 PARBEGIN
 CALL alarm PROCEDURE WITH "on", alarm.time in seconds;
 CALL phone PROCEDURE WITH message [alarm.type],
 phone.number;
 ENDPAR
 ELSE skip
ENDIF
ENDFOR
ENDREP
END

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Box Diagram (Nassi-Shneiderman charts, N-S charts)

It’s a graphical design tool, evolved from a desire to develop a

procedural design representation that would not allow violation of the

structured constructs. Developed by Nassi and Shneiderman and

extended by Chapin, the diagrams (also called Nassi-Shneiderman

charts, N-S charts, or Chapin charts) have the following characteristics:

(1) functional domain (that is, the scope of repetition or if-then-else) is

well defined and clearly visible as a pictorial representation, (2) arbitrary

transfer of control is impossible, (3) the scope of local and/or global data

can be easily determined, (4) recursion is easy to represent.

The graphical representation of structured constructs using the box

diagram is illustrated in Figure below. The fundamental element of the

diagram is a box. To represent sequence, two boxes are connected

bottom to top. To represent if-then-else, a condition box is followed by a

then-part and else-part box. Repetition is depicted with a bounding

pattern that encloses the process (do-while part or repeat-until part) to

be repeated. Finally, selection is represented using the graphical form

shown at the bottom of the figure. Like flowcharts, a box diagram is

layered on multiple pages as processing elements of a module are

refined. A "call" to a subordinate module can be represented within a

box by specifying the module name enclosed by an oval.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

SOFTWARE TESTING

Software Testing Once source code has been generated, software must

be tested to uncover (and correct) as many errors as possible before

delivery to the customer. Software testing is a critical element of

software quality assurance and represents the ultimate review of

specification, design, and code generation.

Testing Objectives

 There is a number of rules that can serve well as testing objectives:

Testing is a process of executing a program with the intent of finding an

error.

1. A good test case is one that has a high probability of finding an as-

yet- undiscovered error.

3. A successful test is one that uncovers an as-yet-undiscovered error..

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

Testing Goals

The software testing process has two distinct goals:

1. To demonstrate to the developer and the customer that the

software meets its requirements. This means that there should be

at least one test for every requirement in the user and system

requirements documents.

2. To discover faults or defects in the software where the

behavior of the software is incorrect, undesirable or does not

conform to its specification.

Testing Principles

Before applying methods to design effective test cases, a software

engineer must understand the basic principles that guide software

testing. A set of testing principles that have been adapted for use:

 .

• All tests should be traceable to customer requirements. As we have

seen, the objective of software testing is to uncover errors. It follows

that the most severe defects (from the customer’s point of view) are

those that cause the program to fail to meet its requirements.

 اعداد: م.م. حسنين علي طالب هندسة برامجيات المرحلة الثالثة

• Tests should be planned long before testing begins. Test planning can

begin as soon as the requirements model is complete. Detailed

definition of test cases can begin as soon as the design model has been

solidified. Therefore, all tests can be planned and designed before any

code has been generated.

• The Pareto principle applies to software testing. Stated simply, the

Pareto principle implies that 80 percent of all errors uncovered during

testing will likely be traceable to 20 percent of all program components.

The problem, of course, is to isolate these suspect components and to

thoroughly test them.

• Testing should begin “in the small” and progress toward testing “in

the large.” The first tests planned and executed generally focus on

individual components. As testing progresses, focus shifts in an attempt

to find errors in integrated clusters of components and ultimately in the

entire system.

•Exhaustive testing is not possible. The number of path permutations

for even a moderately sized program is exceptionally large. For this

reason, it is impossible to execute every combination of paths during

testing. It is possible, however, to adequately cover program logic and to

ensure that all conditions in the component-level design have been

exercised.

