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1-17: Gradient, Divergence and Curl 



1-17: Gradient, Divergence and Curl 

 The del operator () in rectangular coordinate is given by: 

 The del operator () is a vector that has no physical meaning  

or vector  direction by itself 

1-17-1: The gradient: 

 Let  = (x, y, z) be a differentiable at any point, therefore the 

 gradient of  

 The following 

computation formulas  

on gradient should be 

noted: 



1-17-2: The divergence: 

 Let 𝑣  𝑥, 𝑦, 𝑧 = 𝑖  𝑣𝑥 + 𝑗  𝑣𝑦 + 𝑘  𝑣𝑧  then the divergence of 𝑣   

 (written  div 𝑣  or  𝛻 ∙  𝑣  ) is: 

Note the following properties of the divergence of a vector  



 The curl of the vector field 

Is denoted by 𝑐𝑢𝑟𝑙v or 𝛻 × 𝑣  is: 

𝑣  𝑥, 𝑦, 𝑧 = 𝑖  𝑣𝑥 + 𝑗  𝑣𝑦 + 𝑘  𝑣𝑧 

1-17-3: The curl: 

Note the following properties of the curl of a vector  



Note: 

We can defined 𝑑𝑟  𝑎𝑛𝑑  𝛻 in the  

1- Cartesian Coordinate  

2- Cylindrical Coordinate  

3- Spherical  Coordinate  



Example 14: 

The potential that represents an inverse square force is 𝑉 𝑟 =
𝑘

𝑟
 ,  

where 𝑟 = 𝑥2 + 𝑦2 + 𝑧2 1 2 . Using the definition 𝐹 = − 𝛻𝑉,  

calculate the component of this force. 

Solution:  

𝐹 = − 𝛻𝑉 = − 𝑖  
𝑑𝑉 

𝑑𝑥
+ 𝑗 

𝑑𝑉

𝑑𝑦
+ 𝑘 

𝑑𝑉

𝑑𝑧
  

Since 𝑉 𝑟 =
𝑘

𝑟
  

Another solution by using spherical 

coordinate : 



If 𝜙 =
1

𝑟
 where  𝑟 = 𝑥2 + 𝑦2 + 𝑧2 1 2 . Show that 𝛻𝜙 =

−𝑟

𝑟3  

Example 15: 

Solution:  

Example 16: 

Find a unit vector normal to the surface 𝑥𝑦2 + 𝑥𝑧 = 1 at point (-1,1,1).  

Solution:  
a unit vector =

𝑣𝑒𝑐𝑡𝑜𝑟

𝑖𝑡𝑠 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒
 



Example 17: 

Solution 

a: Show that 𝐹 = 2𝑥𝑦 + 𝑧2 𝑖 + 𝑥2𝑗 + 2𝑥𝑧𝑘  is conservative force field  

b: Find the scalar field 
c: Find the work done in moving a unit mass in the field from point 

(1,0,1) to (2,1,-1)scalar field 



 If 𝜙 = 𝑥2y𝑧3  and  𝐀 = 𝑥𝑧𝑖 − 𝑦2𝑗 + 2𝑥2𝑦𝑘  , find:  

a- 𝛻𝜙         b- 𝜵. A           c- 𝜵× A          d- div(𝜙𝐀)         e- curl (𝜙𝐀)   

Example 18: 

Solution 



𝜙𝐀 = 𝑥3𝑦𝑧4𝑖 − 𝑥2𝑦3𝑧3𝑗 + 2𝑥4𝑦2𝑧3𝑘  

+ 



Solution 

Example 19: 

Prove .(𝜙A) = (𝜙) . A + 𝜙 (. A)   , where A = iA1 + j A2 + k A3 



Solution 

Example 20: 

Prove that div curl A = 0 , where A = iA1 + j A2 + k A3 
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1-15: Velocity and Acceleration in  Cylindrical 

Coordinates 

1-16: Velocity and Acceleration in  Spherical  

Coordinates 



1-15: Velocity and Acceleration in  Cylindrical Coordinates 

  The position of a particle in the case of three-dimensional 

motion can be described in cylindrical coordinates R, , z. The 

position vector is then written as: 

 where 𝑒𝑅 is a unit radial 

vector in the xy plane and 𝑒𝑧  is 

the unit vector in the z direction. 

A third unit vector 𝑒𝜙 is needed 

so that the three 𝑒𝑅 𝑒𝜙 𝑒𝑧  vectors 

constitute a right-handed triad, as 

illustrated in Figure. We note that 

k= 𝒆𝑧. 



 As before the velocity and acceleration vectors can be found 

by differentiating equation (1). In the same way as we have done 

before for the plane polar coordinate shows that:  

 The unit vector 𝒆𝑧  does not change in direction, so its time 

derivative is zero. 

Substituting for  the time derivative, we get: 

R 



Substituting for  the time derivative, we get: 

 An alternative way of obtaining the derivative of the unit 

vectors is to differentiating the relationships between the fixed unit 

triad  i j k  and the rotated 𝒆𝑅 𝒆𝜙 𝒆𝑧. 



 The relationship between the unit vectors of Cartesian and 

cylindrical coordinate 

 The relationships between the fixed unit triad i j k and the 

rotated triad 𝒆𝑅 𝒆𝜙 𝒆𝑧 is: 



 When spherical coordinates r, ,  are employed to describe 

the position of a particle, the position vector is written as the 

product of the radial distance r and the unit radial vector 𝒆𝑟, as 

with plane polar coordinates. Thus, 

1-16: Velocity and Acceleration in  Spherical  Coordinates 

 The direction of 𝒆𝑟  is 

now specified by the two angles 

 and . We introduce two more 

unit vectors, 𝒆𝜃  and 𝒆𝜙 , as 

shown in Figure 



 The velocity vector  

 To express the derivative d𝒆𝑟/dt in terms of the unit vectors in 

the rotated triad. we can derive relationships between the i j k and 𝒆𝑟 
𝒆𝜃 𝒆𝜙 triads. For example, because any vector can be expressed in 

terms of its projections on to the x, y, z, coordinate axes 

 𝒆𝑟 . 𝒊 is the projection of the unit vector 𝒆𝑟 directly onto the 

unit vector i. and it is equal to cos , ( as shown in equation)  

the cosine of the angle between those two unit vectors.  



 We need to express this dot product in terms of  and , not 

a. We can obtain the desired relation by making two successive 

projections to get to the x-axis. First project 𝒆𝑟 onto the xy plane, 

and then project from there onto the x-axis. The first projection gives 

us a factor of sin , while the second yields a factor of cos . The 

magnitude of the projection obtained in this way is the desired dot 

product: 

 The relationships for 𝒆𝜃 and 𝒆𝜙 can be obtained as above, 

yielding the desired relations 

 which express the unit vectors of the rotated triad in terms of 

the fixed triad i j k. 



Differentiate the first equation with respect to time. The result is 

 By using the expressions for 𝒆𝜃 and 𝒆𝜙 in Equation 3 we find 

that the above equation reduces to 

The other two derivatives are found through a similar procedure. The 

results are: 



 To find v, we insert the expression for d𝒆𝑟/dt into Equation 2 

The final result is: 

 To find the acceleration, we differentiate the above expression 

with respect to time. This gives 

giving the velocity vector in terms of its components in the rotated 

triad 𝒆𝑅 𝒆𝜙 𝒆𝑧. 

 Upon using the derivatives of the unit vectors, the above 

expression for the acceleration reduces to: 

giving the acceleration vector in terms of its components in the rotated 

triad 𝒆𝑅 𝒆𝜙 𝒆𝑧. 



 A bead slides on a wire bent into the form of a helix, the 

motion of the bead being given in cylindrical coordinates by R = b, 

 = t, z = ct. Find the velocity and acceleration vectors as functions 

of time. 

Example 13: 

Solution:  

 Differentiating, we find 𝑅 = 𝑅 = 0   , 𝜙 = 𝜔,𝜙 = 0, 𝑧 = 𝑐 , 
𝑧 = 0 ,So, from Equations of velocity and acceleration we have: 



Chapter One 

Lecture (11)  

Analytical mechanics  
Dr. Ali A. Mohammed Saleh 

Solved Problems (Chapter One) 



1: Assume that two vectors A and B are known. Let C be an unknown 

vector such that A. C = u is a known quantity and A × C = B. Find 

C in terms of A, B, u, and the magnitude of A. 

Problems of The Chapter One 

Solution:  



2: Find a unit vector normal to the plane containing the two vectors: 

 

  

Solution:  



3:A racing car moves on a circle of constant radius b. If the speed of 

the car varies with time t according to the equation v = ct  where c 

is a positive constant, show that the angle between the velocity 

vector and the acceleration vector is 45° at time t = 𝑏 𝑐   

Solution:  

(Hint: At this time the tangential and normal components of the 

acceleration are equal in magnitude.) 



4: A small ball is fastened to a long rubber band and twirled around in 

such away that the ball moves in an elliptical path given by the 

equation r(t) = i b cos t +j 2b sin t  , where b and  are constants. 

Find the speed of the ball as a function of  t. In particular, find v at  

t =0 and at t = /2 , at which times the ball is, respectively, at its 

minimum and maximum distances from the origin. 

Solution:  



5: A bee goes out from its hive in a spiral path given in plane polar 

coordinates by 𝑟 = 𝑏𝑒𝑘𝑡  = ct   where b, k, and c are positive 

constants. Show that the angle between the velocity vector and the 

acceleration vector remains constant as the bee moves outward.  

(Hint: Find v . a / v a) Solution:  



6:Prove that 𝑣  . 𝑎  =  𝑣𝑣  and, hence, that for a moving particle v and a 

are perpendicular to each other if the speed v is constant.  

(Hint: Differentiate both sides of the equation 𝑣 ∙  𝑣 =  𝑣2 with 

respect to t. Note, 𝑣  is not the same as 𝑎  . It is the magnitude of 

the acceleration of the particle along its instantaneous direction of 

motion.) 

Solution:  



7: Show that the tangential component of the acceleration of a moving 

particle is given by the expression               and the normal 

component is:  

 

 

Solution:  



8: Use vector algebra to derive the following trigonometric identities 

 

 

Solution:  



1.6: Dot or Scalar Product 

1.7: Cross or Vector Product 

Chapter One 
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Dot OR Scalar Product: 

 The dot or scalar product of two vectors A and B, denoted 

by A.B (read A dot B) is defined as the product of the magnitudes 

of A and B and the of the angle between them(projection of A on 

B). In symbols, 

 Assuming that neither A nor B is the zero vector, an 

immediate consequence of the definition is that A . B = 0 if and 

only if A and B are perpendicular. Note that A . B is a scalar and 

not a vector.  

A . B = AB cos ;    0 <  <  



The following laws are valid: 

1. A . B = B . A                       Commutative Law for Dot Products 

2. A . (B + C) = A . B + A . C                  Distributive Law 

3. m(A . B) = (mA) . B = A . (mB) = (A . B)m, 

                                      where m is a  scalar. 

4. i . i = j . j = k . k = 1;                 i . j = j . k = k . i = 0 

5. If A = A1i + A2j + A3k      and        B = B1i + B2j + B3k, then 

                     A . B = A1B1 + A2B2 + A3B3 

In particular, we can write: 

 A . B = AxBx + AyBy + AzBz 

 



6. The square of the magnitude of a vector A is given by the dot 

product of A with itself, 

                                     A2= 𝐀 2=A.A 

 As an example of the dot product, suppose that an object 

under the action of a constant force undergoes a linear 

displacement s, (as shown in Figure 1-4) .By definition, the work 

W done by the force is given by the product of the component of 

the force F in the direction of s, multiplied by the magnitude s 

of the displacement; that is,  

Fig.1-4 

   W=(Fcos)s 

where  is the angle between F and s. 

But the expression on the right is just the 

dot product of F and s, that is,  

  W=F.s 



1-7: CROSS OR VECTOR PRODUCT: 

 The cross or vector product of A and B is a vector 

 C = A × B (read A cross B). The magnitude of A × B is defined 

as the product of the magnitudes of A and B and the sine of the 

angle between them. The direction of the vector C = A × B is 

perpendicular to the plane of A and B and such that A, B, and C 

form a right-handed system.  

In symbols, 

A × B = AB sin u;     0         

where u is a unit vector indicating the 

direction of A × B. If A = B or if A is 

parallel to B, then sin  = 0 and A × B = 0.  



The following laws for cross product are shown: 

1. A × B = -B × A       (Commutative Law for Cross Products Fails) 

2. A × (B + C) = A× B + A × C       Distributive Law 

3. m(A × B) = (mA) × B = A × (mB) = (A × B)m,  where m is a scalar. 

 Also the following consequences of the definition are 

important: 

4. i × i = j × j = k × k = 0, 

 

4.  i × j = k = - j × i;  j × k = i = -k × j ; k × i = j= -i × k 

     This cyclic nature of the cross product can be 

emphasized by diagramming the multiplication table 

as shown in Figure 



5. 𝐀 ×  𝐁 = the area of a parallelogram with sides A and B. 

6. If A × B = 0 and neither A nor B is a null vector, then A and B are 

parallel.  

7. If A =Axi + Ayj + Azk and B = Bxi + Byj + Bzk, then 

𝐀 × 𝐁 =

i j k
Ax Ay Az

Bx By Bz

 

The cross product expressed in i, j ,k form is: 
 



Let us calculate the magnitude of the cross product. We have 

This can be reduced to:  

from the definition of the dot product, the above equation may be 

written in the form: 

Taking the square root of both sides of Equation above we can express  

the magnitude of the cross product as 

 where  is the angle between A and B.  



 A physical example of the cross product is the rotational 

moment (torque)  
 = r × F 

 Let a force F act at a point P(x, y, z), as shown in Figure 1-5, 

and let the vector OP be designated by r; that is, 

OP = r = ix +jy + kz 

The moment N of force, or the torque N,  

about a given point 0 is defined as  

the cross product   N= r x F 

 

Figure 1-5: Illustration of the moment of 

                   a force about a point 0. 

 P 



 Thus, the moment of a force about a point is a having a 

magnitude and a direction. If a single force is applied at a point P on 

a body that is initially at rest and is free to turn about a fixed point 0 

as a pivotمحور, then the body tends to rotate. The axis of this rotation 

is perpendicular to the force F, and it is also perpendicular to the line 

OP; therefore, the direction of the torque vector N is along the axis 

of rotation. The magnitude of the torque is given by: 

N = 𝐫 × 𝐅 =r Fsin  

in which  is the angle between r 

and F. Thus, N  can be regarded as 

the product of the magnitude of the 

force and the quantity r sin , 

which is just the perpendicular 

distance from the line of action of 

the force to the point 0.  

P 

file:///C:/Users/KH/OneDrive/Desktop/torque.html


Representation of a given vector as the product of a 

scalar and a single unit vector: 

Consider the equation:  

A = i Ax + j Ax + k Ax 

Multiply and divide on the right by the magnitude of A 

Now Ax/A = cos, Ay/A = cosβ, and cos γ = Az/A  

are the direction cosines of the vector A, and , 

β, and γ are the direction angles. Thus, we can 

write   are the direction cosines of vector A, and  

are the direction angles. 



Thus we can write  

A =A(i cos +j cos β + k cos γ) =A(cos ,cos β, cos γ) 

         or           A= nA 

where n is a unit vector whose components are cos ,cos β, and cos 

γ. Consider any other vector B. Clearly, the projection of B on A is 

just 

where  is the angle between A and B. 

Example 1: 

 Two vectors  

 1-  Find the angle between the vectors 

 2- Find the vector product of the vectors 
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Solution:     

1-  
          

 and since     

            

i . i = j . j = k . k = 1;   

i . j = j . k = k . i = 0 

2- 
  

kjikji
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Example 2:   

jiF ˆˆ
1
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A force   was applied on a body at a point p1  such that   

and a second force   was applied at a point   

. Find: (a) the total moment  

(b) the magnitude of  (c) the direction cosines of  

. 

Solution: 
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The total moment is 

 (b)   
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2
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1
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N y

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2
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(c)   

,     and   

1-9:Triple Products: 

The expression      

            A. (B × C) 

is called the scalar triple product of A, B, and C. It is a scalar 

because it is the dot product of two vectors. Referring to the 

determinant expressions for the cross product, we see that the 

scalar triple product may be written: 

𝐀. (𝐁 × 𝐂)  =

Ax Ay Az

Bx By Bz

Cx Cy Cz

 



Because the exchange of the terms of two rows or of two columns 

of a determinant changes its sign but not its absolute value, we can 

derive the following useful equation: 

1- (A . B)C ≠ A(B . C) in general 

2- A . (B × C) =B. (C × A) = C . (A× B) = volume of a 

parallelepiped having A, B, and C as edges, or the negative of this 

volume according as A, B, and C do or do not form a right handed 

system. Thus, the dot and the cross may be interchanged in the 

scalar triple product. 



The expression 

A× (B × C) 

is called the vector triple product.  

The following equation holds for the vector triple product: 

1- A× (B × C) ≠ (A× B) × C    (Associative Law for Cross Products 

Fails) 

2- A×(B×C) = (A . C) B – (A . B) C 

    (A×B) ×C = (A . C) B – (B . C) A 

 Vector triple products are particularly useful in the study of 

rotating coordinate systems and rotations of rigid bodies. 



Example 3: 

 Given the three vectors A = 1, B = i—j, and C = k, find  

   1- A. (B × C) 

   2- A× (B × C) 

Solution: 

  

1-  

2-  
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1-10:Change of Coordinate System: 

         (The Transformation Matrix) 

 The rotation of a Cartesian 

coordinate system is an example of an 

orthogonal transformation. Consider the 

vector A expressed relative to the triad ijk: 

Relative to a new triad i'j'k' having 

 a different orientation from that of i j k,  

the same vector A is expressed as: 



 Now the dot product A. i' is just Ax', that is, the projection of 

A on the unit vector  i'. Thus, we may write 

The scalar products (i . i'), (i . j'), and so on are called the 

coefficients of transformation. They are equal to the direction 

cosines of the axes of the primed coordinate system relative to the 

unprimed system. The unprimed components are similarly expressed 

as: 

i 

i   

A 



The equations of transformation are conveniently expressed in matrix 

notation. Thus, 

The 3-by-3 matrix in Equation 

above is called the transformation 

matrix.  

 Express the vector A = 3i + 2j + k in terms 

of the triad i'j'k', where the x'y'—axes are 

rotated 45° around the z-axis, with the z- and 

z'-axes coinciding, as shown in Figure. 

 Referring to the figure, we have for the 

coefficients of transformation i . i' = cos 45° 

and so on, 

Example 4: 



we have from the figure:  
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so that, in the primed system, the vector A is given by 

These give: 

A = 3i + 2j + k  We substitute the components of the vector 



Example 5: 

           Find the transformation matrix for a rotation of the primed 

coordinate system through an angle ϕ about the z-axis. We have 

and all other dot products are zero; hence, 

 the transformation matrix is: 
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 The transformation matrix for a rotation about a different coordinate 

axis-say, the y-axis through an angle () given by the matrix 

Consequently, the matrix for the combination of two 

rotations, the first being about the z-axis (angle ϕ) and 

the second being about the new y' -axis (angle (), is 

given by the matrix product 

z-axis y-axis 
Now matrix multiplication is, in general, noncommutative; 

therefore, we might expect that the result would be different if the 

order of the rotations, and, therefore, the order of the matrix 

multiplication, were reversed. 



Example6: 
''' ˆˆˆ kjiji ˆˆ Express the vector          in terms of the triad           where the x' 

z' axes are rotated 60 degree around the y axis, and the y' axes 

coinciding. 

Solution: From the figure . we can see that 

 The rest are zero 

  Therefore the transformation matrix and the equation of  

transformation becomes: 
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Rotating  

 around y 

Rotate 

 around x 

Rotating  around z 



Some important trigonometric functions in transform operations 



Solved Problems  

Chapter One 

The Vectors (5)  

Analytical mechanics  
Dr. Ali A. Mohammed Saleh 



1.1: Given the two vectors A = i +j and B =j + k, find the following: 

 (a) A+B and 𝐀 + 𝐁   (b) 3A-2B   (c) A. B     (d) A×B and 𝐀x𝐁  

Solution: 



1.2 Given the three vectors A = 2i +j, B = i + k, and C = 4j, find the 

following: (a) A. (B + C) and   (A + B) .C      

                       (b) A.(B×C) and (A×B).C    (c) A×(B×C) and (A×B)×C 

Solution: 



1.3: Find the angle between the vectors  

          A = ai + 2aj   and   B = ai + 2aj + 3ak.  

(Note: These two vectors define a face diagonal and a body diagonal 

of a rectangular block of sides a, 2a, and 3a.) 

Solution: 

1.4 Prove that the projection of A on B is equal to A .b, where b is a 

unit vector in the direction of B. 

      Through the initial and terminal points of A 

pass planes perpendicular to B at G and H 

respectively, as in the adjacent Figure: then 

Projection of A on B = GH = EF =  

Acos  = A .b 

Solution: 



Solution: 

1.5: Find the volume of  a parallelepiped with sides  

 A= 3i –j ,    B= j +5k  and    C =i +5j+4k    

 1.6: A= i +j ,    B= 2i -3j +k  and    C = 4j  ̶ 3k , find  

(a)   (A×B) × C   (b) A × (B× C) 

Solution: 

= (4)(2i -3j +k )  ̶  (-15) (i +j)  

A.C = 4 
(A×B)×C=(A . C)B – (B . C) A 

B.C = -12-3=-15 

= 8i-12j +4k +15i +15j 

= 23i +3j + 4k 



A×(B×C)= (A.C) B – (A.B) C  
A.C = 4 

= (4)(2i -3j +k )  ̶  ( ̶ 1) 4j  ̶ 3k  
A.B = -1 

= 8i  ̶  12j +4k  + 4j  ̶ 3k  

= 8i  ̶  12j  + k  



1.6:Find a vector perpendicular to  i +2k and  i + j + k, and find the    

area of the triangle with these two vectors as adjacent sides 

The area of the triangle is half the area of the parallelogram and 

hence the desired area is :  

This vector is  perpendicular to the given vectors.  

−2𝒊 + 3𝒋 + 𝒌 =  4 + 9 + 1 =  14  



1.7: Find a unit vector normal to the plane containing the two vectors 

       A = 2i +j ̶   k  and B = i  ̶ j +2k 

Solution: 

Unit vector = 
𝒕𝒉𝒆 𝒗𝒆𝒄𝒕𝒐𝒓

𝑰𝒕𝒔 𝒎𝒂𝒈𝒏𝒊𝒕𝒖𝒅𝒆 
=  

A×B
A×B

 



1.8: Find the value of  for which the vectors a and b are    

perpendicular, where  a= 2i +  j + k and b = i -2j +3k 

Solution: 



1.9:Find the projection of the vector i +3j + 7k  

                on the vector 2i+ 6j+ 3k  

Solution: 



Chapter One 

The Vectors (6)  

Analytical mechanics  
Dr. Ali A. Mohammed Saleh 

1-10: Derivative and Integration of a Vector 

1-11: Position Vector of a Particle  



1-10: Derivative and Integration of a Vector 

 Consider a vector A, whose components are functions of a 

single variable u. The vector may represent position, velocity, and so 

on. The parameter u is usually the time t, but it can be any quantity 

that determines the components of A: 

The derivative of A with respect to u is defined, quite analogously to 

the ordinary derivative of a scalar function, by the limit 

Where ∆𝐴𝑥 = 𝐴𝑥 (u + ∆u) − 𝐴𝑥 (u) and so on. Hence: 

The derivative of a vector is a vector whose  

Cartesian components are ordinary derivatives. 



 Derivative of the sum of two vectors is equal to the sum of the 

derivatives, namely, 

The rules for differentiating vector products obey similar rules of 

vector calculus. For example, 

 Notice that it is necessary to preserve the order of the terms in 

the derivative of the cross product. 

 The integration of a vector as a function of any variable say 

time (t) can be written as:  



1.11: Position Vector of a Particle: Velocity and   

Acceleration in Rectangular Coordinates 

  The position of a particle can be specified by a single vector, 

namely, the displacement of the particle relative to the origin of the 

coordinate system. This vector is called the position vector of the 

particle. In rectangular coordinates (as shown in figure), the position 

vector is simply 

 The components of the position vector 

of a moving particle are functions of the time, 

namely, 

 If the vector is the position vector r of a moving particle and 

the parameter  is the time t, the derivative of r with respect to t is 

called the velocity, which we shall denote by v. 



where the dots indicate differentiation with respect to t. 

The geometric significance of the velocity vector 

 Suppose a particle is at a certain 

position at time t. At a time ∆t later, the 

particle will have moved from the position 

r(t) to the position r(t + ∆t). The vector 

displacement during the time interval ∆t is: 

∆𝑟 = 𝑟 (t + ∆t) − 𝑟 (t) 



 In the time interval ∆t, the particle 

moves along the path from P to P'. As ∆t 

approaches zero, the point P' approaches P, 

and the direction of the vector ∆ r/ ∆t 

approaches the direction of the tangent to the 

path at P. The velocity vector, therefore, is 

always tangent to the path of motion.  

So the quotient ∆r /∆t is a vector that is 

parallel to the displacement. As we consider 

smaller and smaller time intervals, the 

quotient ∆r / ∆t approaches a limit dr/dt, 

which we call the velocity. The vector dr/dt 

expresses both the direction of motion and 

the rate. This is shown graphically in Figure 



The time derivative of the velocity is called the acceleration. 

Denoting the acceleration with a, we have 

In rectangular components, 

 Thus, acceleration is a vector quantity whose components, in 

rectangular coordinates, are the second derivatives of the positional 

coordinates of a moving particle. 

The magnitude of the velocity is called the speed. In rectangular 

components the speed is just: 



Example7: Examine the motion represented by the equation: 

This represents motion in the xy plane, because 

the z component is constant and equal to zero. 

The velocity v is obtained by differentiating with 

respect to t, namely, 

The acceleration, likewise, is given by 

 Thus, a is in the negative y direction and has the constant 

magnitude g. The path of motion is a parabola, as shown in Figure.  

The speed v varies with t according to  

the equation: 



Example 8: Circular Motion 

Let us analyze the circular motion. Suppose the position vector of a 

particle is given by: 

where , is a constant and b is the radius. 

The distance from the origin remains constant: 

 So the path is a circle of radius b centered at the origin. 

Differentiating r, we find the velocity vector 

The particle traverses its path with constant speed: 



The acceleration is 

In this case the acceleration is perpendicular to the velocity, because 

the dot product of v and a vanishes: 

Comparing the two expressions for a and r, we find: 

so a and r are oppositely directed: that is. a 

always points toward the center of the circular 

path (as shown in Figure). 





 Consider two particles whose 

position vectors are r1 and r2 respectively. 

The displacement  of the second particle 

with respect to the first is the difference  

 r2–  r1which we shall call r12.The velocity 

of the second particle relative to the first 

which we shall call the relative velocity is : 

  

By transposing v1 , for the actual 

velocity of particle 2 in term of the 

particle 1 and the relative velocity 

of the two particles we have:  

 v2= v1–  v12  



 A wheel of radius b rolls along the ground with a forward speed 

vo, find the velocity of any point P on the rim relative to the ground. 

 The motion of the point P is circular and suppose that the 

motion  is clockwise  about the origin center of wheel, in this case. 

Then, we first consider the position vector is given be expression: 

where  = t 

 The time derivative gives 

the velocity of P relative to the 

center of the wheel as: 



 Since the angular velocity 𝜔 = 𝑣𝑜 𝑏 , and since the velocity  

of the center of the wheel relative to the ground is 𝐢𝑣𝑜,then the  

true velocity of P relative to the ground is  

In particular, for we find that  

v = i2𝑣𝑜 , which is just twice the 

velocity of the center C. At these 

points the particle is at the uppermost 

part of its path. 

Furthermore we obtain v = 0. At 

these points the particle is at its 

lowest point and is instantaneously 

in contact with the ground. 



The following relations represent the position  of two particles move in  

the same circular path: 

Find 1- relative velocity 2- magnitude of the relative velocity, 

 3-  the time rate of the change of the displacement between the  

two particles, all as a function of time.  

 v12= v2–  v1 since  Then  

Therefor the relative velocity is: 

1- 

2- 



3- The time rate of the change of the displacement between the two  

particles is:  

 and since 

Then  

Then  

Note the time rate of the change of the displacement between the two  

particles is not the same as the magnitude of the relative velocity. 



 Any vector can be expressed as the product of its magnitude 

and a unit vector giving its direction. The velocity vector v can be 

written as the product of the particle's  speed v and a unit vector   

that give the direction of the particle's motion, thus: 

 The vector   is called the unit tangent vector. As the particle 

moves the speed v may change and the direction of  may change. By 

using the differentiation of product of scalar and vector to obtain 

acceleration vector the result is: 

 The  unit vector  being of constant magnitude,  has a derivative 
𝑑𝜏

𝑑𝑡
 express the change in direction of  with respect to time  



 The particle move a distance s along 

the path from the initial point P to another point 

𝑃  at time interval t. let denote the unit tangent 

vector  at P and 𝑃  by  and   , respectively as 

shown in figure. 

 The directions of these two unit vectors 

differ by angle  as shown in the figure, for 

small value of , the difference  approaches 

 in magnitude ∆𝜏 → ∆𝜓  and the direction of 

 become perpendicular to the direction of   

∆𝜏 ⊥    when  ∆𝜓 and ∆𝑠 approach to zero. 

The derivative 
𝑑𝜏

𝑑𝜓
 is of magnitude unity 

𝑑𝜏

𝑑𝜓
= 1 and is perpendicular to  

𝑑𝜏

𝑑𝜓
⊥  𝜏  



 To find the time derivative unit vector 
𝑑𝜏

𝑑𝑡
 , we use the chain rule  

as follows:  

 In which   = 
𝑑𝑠

𝑑𝜓
 is the radius of curvature 

 of the path of moving  particle at P. Substitute the 

value of  
𝑑𝜏

𝑑𝑡
  into equation: 

So That we  call it the  unit normal vector and denote it by n  

To find  



 Thus we can note that the acceleration of a moving particle has  

two components: 

1- Tangential component (in the direction of motion) 𝑎𝑇 = 𝑣  = 𝑠   
 

2- Normal component, also called centripetal acceleration (directed 

toward the center of curvature on the concave side of the path 

motion) 𝑎𝑁 = 
𝑣2

𝜌
  

The magnitude of the total acceleration is given by:  



 If the particle moves on a circle with 

constant speed Then the acceleration vector 

is of magnitude 
𝑣2

𝑅𝑜
 , where 𝑅𝑜 is the radius 

of the circle. The acceleration vector is 

always points to the center in this case as 

shown in figure.  

 However if the speed is not constant 

but increase at a certain rate  𝑣  then the 

acceleration has a forward component and is 

slanted  away  from the center of circle towards 

the direction as shown in figure. What happen 

if the speed decrease at a certain rate  𝒗   ? 

a 





1-14: Velocity and acceleration in  plane polar coordinate 

 It is often convenient to employ polar coordinates r,  to 

express the position of a particle moving in a plane. The position 

vector of the particle can be written as the product of the radial 

distance r by a unit radial vector 𝐞𝑟: 

 The coordinates of a point P are 

described by the radial distance from the 

origin “r” and the angle with respect to 

the x- axis. 

            x = r cos      

            y = r sin  

Along r the unit vector is 𝑒 𝑟  and along  , 

the unit vector is 𝑒 𝜃 



 As the particle moves, both r and 𝑒 𝑟 vary; thus, they are both 

functions of the time. Hence, if we differentiate with respect to t, we 

have 

-------- 1 

 To calculate the derivative d 𝑒 𝑟 /dt, let us consider the vector 

diagram shown in figure: 



 When the direction of r changes by an amount the  

corresponding change 𝑒 𝑟  of the unit radial vector is as follows: 

 The magnitude 𝑒 𝑟  is approximately equal to  ( 𝑒 𝑟   ) 

and the direction of is very nearly perpendicular to 𝑒 𝑟 (𝑒 𝑟  𝑒 𝑟). Let 

us introduce another unit vector, 𝑒 𝜃, whose direction is perpendicular 

to 𝑒 𝑟. Then we have 

If we divide by t and take the limit, we get: 

-------- 2 



 For the time derivative of the unit radial vector. In similar 

way, we can argue that the change in the unit vector 𝑒 𝜃 is given by 

the approximation: 

 Here the minus sign is inserted to 

indicate that the direction of the change is 

opposite to the direction of 𝑒 𝑟, as shown in 

the figure. Consequently, the time derivative 

is given by 

-------- 3 



  We can finally write the equation for the velocity by 

substituting  equation (2) for the derivative of the unit radial  vector in 

equation (1) to find: 

 Where, 𝑟  is the radial component of the velocity vector, and 

𝑟𝜃  is the transverse component. 

 To find the acceleration vector, we take the derivative of the 

velocity with respect to time for equation (4). This gives 

-------- 4 



 Substituting  the value of  
𝑑𝑒 𝑟

𝑑𝑡
 and 

𝑑𝑒 𝜃

𝑑𝑡
  in the equation of  

acceleration  we obtain: 

Thus, the radial component of the acceleration vector is: 

and the transverse component is 

-------- 5 



 We study here two special cases  

 For a particle moves on a circle of constant radius b, so that  

𝑟 = 0, then the radial component of the acceleration is of magnitude 

𝑏𝜃 2 and is directed toward the center of the circular path. The 

transverse component in this case is  𝑏𝜃   .  

While if the particle moves along a fixed radial line, that is if  is 

constant then the radial component is 𝑟  and the transverse 

component is zero.  

 If r and  both vary, then the general expression (6) gives the 

acceleration.  



 A particle moves in a spiral path in such away that the radial 

distance decreases at a constant rate, r=b   ̶ ct , while the angular 

speed increases at a constant rate, 𝜃 = 𝑘𝑡 . Find the speed as a 

function of time. 

Example 11: 

Solution: 

 Which is valid for 𝑡 ≤  𝑏 𝑐 . Note that v = c for both t=0, r=b 

and for t=𝑏 𝑐 , r=0. 



Example 12: 

Solution: 

 On a horizontal turntable that is rotating at constant angular 

speed a bug is crawling outward  on a radial line such that its distance 

from the center increases quadratically with time 𝑟 = 𝑏𝑡2 , =t  

where b and  are constants. Find the acceleration of the bug. 

 Note that the radial component of the acceleration becomes 

negative for large t  in this example , although the radius is always 

increasing monotonically with time. 



Chapter two 

Lecture (3)  

Analytical mechanics  
Dr. Ali A. Mohammed Saleh 

*The force as a function of time  

*The Forces as a function of Velocity 



2-2-3: The force as a function of time: The concept of impulse  

The equation of motion is :  

The linear momentum (and velocity) can be obtained as a  function of 

time by integrating the equation of motion to get is :  

 Where C is the constant of integration. The integral  𝑓 𝑡 𝑑𝑡 is 

called impulse. The position of the particle as a function of time can 

be found by a second integration as follow: 



A block is initially at rest on a smooth horizontal surface. At time t=0 

a constantly increasing horizontal force is applied F= ct. Find the 

displacement as a function of time  

Example 3: 

Solution: 



2-2-4:The Forces as a function of Velocity 

 Forces like viscous resistance exerted on a body moving 

through a fluid or like Air resistance on falling (or rising) body are 

called viscous forces. If the force can be expressed as a function of v 

only, the differential equation of motion 𝐹 = 𝑚𝑥   may be written in 

the form: 

from eq. (2) we found: 

from eq. (1) we found: 



Solving  eq. (3) gives v as a function of time, v =v(t) and we can solve 

 it for x as given: 

𝑣 =
𝑑𝑥

𝑑𝑡
 

𝑥 =   𝑣 𝑡 𝑑𝑡 = 𝑥(𝑡) 

Solving  eq. (4) gives v as a function of position we get: 

v =v(x)  

𝑣(𝑥) =
𝑑𝑥

𝑑𝑡
 

𝑡 =   
𝑑𝑥

𝑣(𝑥)
= 𝑡(𝑥) 



Example 4: 

Suppose a block is projected with initial velocity 𝑣𝑜 on a smooth 

horizontal surface and that there is air resistance such that F(v) = -cv 

the linear case dominates. Calculate v and x as a function of time  

Solution: 

The differential equation of motion is:   

Which gives upon integrating,  

We can easily solve for (v) as a function of (t) multiplying by − 𝑐
𝑚   

and this give :  



Taking the exponential of both side. The result is:  

 Thus the velocity decreases exponentially with time. A second 

integration  gives the position (x): 

Showing that the block approaches a limiting position  (i.e. the block 

never goes beyond the limiting position) given by: 



Chapter two 

Lecture (4)  

Analytical mechanics  
Dr. Ali A. Mohammed Saleh 

Vertical fall through a Fluid 

and Terminal Velocity 



2-3: Vertical fall through a Fluid and Terminal Velocity:  

 The viscous force that a fluid exerts on a particle depends on 

velocity, F = F(v). in the case of viscous resistance exerted on a body 

moving through a fluid. If the force can be expressed as a function of 

v only, the differential equation of motion may be written in either of 

the two forms: 

𝐹𝑜 is any constant force that does not depend on v. Upon separating 

variables, integration yields either t or x as a function of v. A second 

integration can then yield a functional relationship between x and t. 



 For an object falling vertically in a resisting fluid, the force 𝐹𝑜 

in equations above is the weight of the object  ̶  mg for the x-axis 

positive in the upward direction. The resistance force is proportional 

to the first power of v. we can express the force as  ̶  cv regardless of 

the sign of v because the resistance is always opposite to the direction 

of motion. Then the differential equation of motion is given by: 

2-3-1:Linear case ( F= ̶ cv): 

 The constant of proportionality c depends on the 

size and shape of the object and the viscosity of the fluid. 

Separating variables and integrating, we find:  



in which 𝑣𝑜 is the initial velocity at t = 0. Upon multiplying by  ̶  c/m 

and taking the exponential, we can solve for v: 

 After a sufficient time (t >> m/c), the exponential term drops 

to a negligible value and the velocity approaches the limiting value  

  ̶ mg/c. The limiting velocity of a falling body is called the terminal 

velocity; it is that velocity at which the force of resistance is just 

equal and opposite to the weight of the body so that the total force is 

zero, and so the acceleration is zero.  

The magnitude of the terminal velocity is the terminal speed  mg/c 

which is designate by 𝑣𝑡 and let us write  the characteristic time  

by m/c. Equation 3 can  then be written as 



In particular, for an object dropped from rest at time t =0, 𝑣𝑜 =0, we 

find: 

Integrating equation 3 with give  x as a function of t, then we get: 

 We can write equation 5 in term of the terminal speed 𝑣𝑡 and  

characteristic time  : 

Where:  



The ratio between the terminal speed and the characteristic time is:  

 In this case, the magnitude of F(v) is 

proportional to 𝑣2. To ensure that the force remains 

resistive, we must remember that the sign preceding 

the F(V) term depends on whether or not the motion 

of the object is upward or downward. This is the case 

for any resistive force proportional to an even power 

of velocity. 

2-3-2: non linear case (Quadratic case, 𝑭 𝒗 = ∓𝒄 𝒗𝟐 :  

 A general solution involves treating the upward and downward 

motions separately. Here, we things somewhat by considering only the 

situation in which the body is either dropped from rest or projected 

downward with an initial velocity 𝑣𝑜.  



Then the equation of motion is : 

For rising bodies 𝐹𝑟 is negative (downward) 

For falling bodies 𝐹𝑟 is positive (upward) 

For rising body we have: 

−𝑚𝑔 − 𝑐𝑣2 = 𝑚 
𝑑𝑣

𝑑𝑡
 

𝑡 =   𝑑𝑡
𝑡

𝑡𝑜

= −
1

𝑔
  

𝑑𝑣

1 +
𝑐

𝑚𝑔 𝑣2
 

Let  

𝑢 =  
𝑐

𝑚𝑔
  v ,   𝑣 =  

𝑚𝑔

𝑐
  u     𝑑𝑣 =  

𝑚𝑔

𝑐
  du  

The differential equation of motion can be integrated to give t as a 

function of v 



𝑡 − 𝑡𝑜 = −
1

𝑔
  

𝑚𝑔
𝑐   du

1 + 𝑢2
 

𝑡 = −
𝑚

𝑔𝑐
 𝑡𝑎𝑛−1𝑢 + 𝑡𝑜 

Where terminal speed  𝑣𝑡 and characteristic time   are equal:  

𝑡 = −
𝑚

𝑔𝑐
 𝑡𝑎𝑛−1

𝑐

𝑚𝑔
  v + 𝑡𝑜 

𝑣𝑡 =
𝑚𝑔

𝑐
 𝜏 =

𝑚

𝑔𝑐
  

𝑡 = −𝜏 𝑡𝑎𝑛−1  
 𝑣

𝑣𝑡
 + 𝑡𝑜 

Now we find v as a function of t from equation above : 

𝑣𝑡  𝑡𝑎𝑛  
𝑡 −𝑡𝑜

−𝜏
= 𝑣 𝑣 =  𝑣𝑡  𝑡𝑎𝑛  

𝑡𝑜 − 𝑡

𝜏
 

 for rising  



For falling body we have: 

In the same way we can find the equation of motion for falling body 

and is given by : 

𝑡 =   𝑑𝑡
𝑡

𝑡 𝑜

= −
1

𝑔
  

𝑚 𝑑𝑣

−𝑚𝑔 + 𝑐𝑣2
 

−𝑚𝑔 + 𝑐𝑣2 = 𝑚 
𝑑𝑣

𝑑𝑡
 

𝑡 = −𝜏 𝑡𝑎𝑛ℎ−1  
 𝑣

𝑣𝑡
 + 𝑡 𝑜 

Now we find v as a function of t : 

𝑣 =  − 𝑣𝑡 𝑡𝑎𝑛ℎ  
𝑡 − 𝑡 𝑜

𝜏
  for rising  

Graphs of speed versus time for a falling  

body subject to linear  and quadratic air 

resistance 
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2-3: Vertical fall through a Fluid and Terminal Velocity:  

 The viscous force that a fluid exerts on a particle depends on 

velocity, F = F(v). in the case of viscous resistance exerted on a body 

moving through a fluid. If the force can be expressed as a function of 

v only, the differential equation of motion may be written in either of 

the two forms: 

𝐹𝑜 is any constant force that does not depend on v. Upon separating 

variables, integration yields either t or x as a function of v. A second 

integration can then yield a functional relationship between x and t. 



 For an object falling vertically in a resisting fluid, the force 𝐹𝑜 

in equations above is the weight of the object  ̶  mg for the x-axis 

positive in the upward direction. The resistance force is proportional 

to the first power of v. we can express the force as  ̶  cv regardless of 

the sign of v because the resistance is always opposite to the direction 

of motion. Then the differential equation of motion is given by: 

2-3-1:Linear case ( F= ̶ cv): 

 The constant of proportionality c depends on the 

size and shape of the object and the viscosity of the fluid. 

Separating variables and integrating, we find:  



in which 𝑣𝑜 is the initial velocity at t = 0. Upon multiplying by  ̶  c/m 

and taking the exponential, we can solve for v: 

 After a sufficient time (t >> m/c), the exponential term drops 

to a negligible value and the velocity approaches the limiting value  

  ̶ mg/c. The limiting velocity of a falling body is called the terminal 

velocity; it is that velocity at which the force of resistance is just 

equal and opposite to the weight of the body so that the total force is 

zero, and so the acceleration is zero.  

The magnitude of the terminal velocity is the terminal speed  mg/c 

which is designate by 𝑣𝑡 and let us write  the characteristic time  

by m/c. Equation 3 can  then be written as 



In particular, for an object dropped from rest at time t =0, 𝑣𝑜 =0, we 

find: 

Integrating equation 3 with give  x as a function of t, then we get: 

 We can write equation 5 in term of the terminal speed 𝑣𝑡 and  

characteristic time  : 

Where:  



The ratio between the terminal speed and the characteristic time is:  

 In this case, the magnitude of F(v) is 

proportional to 𝑣2. To ensure that the force remains 

resistive, we must remember that the sign preceding 

the F(V) term depends on whether or not the motion 

of the object is upward or downward. This is the case 

for any resistive force proportional to an even power 

of velocity. 

2-3-2: non linear case (Quadratic case, 𝑭 𝒗 = ∓𝒄 𝒗𝟐 :  

 A general solution involves treating the upward and downward 

motions separately. Here, we things somewhat by considering only the 

situation in which the body is either dropped from rest or projected 

downward with an initial velocity 𝑣𝑜.  



Then the equation of motion is : 

For rising bodies 𝐹𝑟 is negative (downward) 

For falling bodies 𝐹𝑟 is positive (upward) 

For rising body we have: 

−𝑚𝑔 − 𝑐𝑣2 = 𝑚 
𝑑𝑣

𝑑𝑡
 

𝑡 =   𝑑𝑡
𝑡

𝑡𝑜

= −
1

𝑔
  

𝑑𝑣

1 +
𝑐

𝑚𝑔 𝑣2
 

Let  

𝑢 =  
𝑐

𝑚𝑔
  v ,   𝑣 =  

𝑚𝑔

𝑐
  u     𝑑𝑣 =  

𝑚𝑔

𝑐
  du  

The differential equation of motion can be integrated to give t as a 

function of v 



𝑡 − 𝑡𝑜 = −
1

𝑔
  

𝑚𝑔
𝑐   du

1 + 𝑢2
 

𝑡 = −
𝑚

𝑔𝑐
 𝑡𝑎𝑛−1𝑢 + 𝑡𝑜 

Where terminal speed  𝑣𝑡 and characteristic time   are equal:  

𝑡 = −
𝑚

𝑔𝑐
 𝑡𝑎𝑛−1

𝑐

𝑚𝑔
  v + 𝑡𝑜 

𝑣𝑡 =
𝑚𝑔

𝑐
 𝜏 =

𝑚

𝑔𝑐
  

𝑡 = −𝜏 𝑡𝑎𝑛−1  
 𝑣

𝑣𝑡
 + 𝑡𝑜 

Now we find v as a function of t from equation above : 

𝑣𝑡  𝑡𝑎𝑛  
𝑡 −𝑡𝑜

−𝜏
= 𝑣 𝑣 =  𝑣𝑡  𝑡𝑎𝑛  

𝑡𝑜 − 𝑡

𝜏
  for rising  



For falling body we have: 

In the same way we can find the equation of motion for falling body 

and is given by : 

𝑡 =   𝑑𝑡
𝑡

𝑡 𝑜

= −
1

𝑔
  

𝑚 𝑑𝑣

−𝑚𝑔 + 𝑐𝑣2  

−𝑚𝑔 + 𝑐𝑣2 = 𝑚 
𝑑𝑣

𝑑𝑡
 

𝑡 = −𝜏 𝑡𝑎𝑛ℎ−1  
 𝑣

𝑣𝑡
 + 𝑡 𝑜 

Now we find v as a function of t : 

𝑣 =  − 𝑣𝑡 𝑡𝑎𝑛ℎ  
𝑡 − 𝑡 𝑜

𝜏
  for rising  

Graphs of speed versus time for a falling  

body subject to linear  and quadratic air 

resistance 
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 One of the most important cases of rectilinear motion is 

that  produced by linear restoring force. This is a force whose 

magnitude, is proportional to the displacement of a particle 

from some equilibrium position and whose direction is always 

opposite to that of the displacement. Such force is exerted by an 

elastic cord or by spring obeying Hooke’s law. 

Where X is the total length and a is the unstretched (zero load) 

length of the spring. The variable x= (X-a) is the displacement of 

the spring from it is equilibrium. The proportionality constant k 

is called stiffness 

2-4:Linear Restoring Force: Harmonic Motion  



 Let a particle of mass m be 

attached to the spring as shown in figure. 

The force acting on particle is given by 

equation (1).  

F= ̶  kx 

 Let the same spring be hold vertically as shown in figure. 

The total force now on particle is; 

Where the positive is downward. Let 

measure  x relative to new equilibrium 

position, that is the:  

This given again: F= ̶  kx 



So the differential equation of motion is again: 

 Equation (3) is linear differential equation of motion with 

constant coefficient. We try 𝐴 𝑒𝑞𝑡 , where q is a constant can be 

determined. 

If  x = 𝐴 𝑒𝑞𝑡 a solution for all values of time. Apply this solution 

to eq. 3 we have: 

Which reduces to the equation: 

That is: 



If 𝑓1  and 𝑓2 are solution then the sum of 𝑓1 + 𝑓2 is a solution too.  

The general con of equation (3) is then:  

Since 𝑒𝑖𝑢 = cos 𝑢 + 𝑖 sin 𝑢  the alternate forms of the solution are: 

 The constant A of integration in the above equations are 

determined From the initial conditions. Equations. 5,6and 7 are 

solution of eq.(3). The  Motion of sinusoidal oscillation of the 

displacement x, so that the eq.(3) is the differential equation of 

the harmonic oscillator. The coefficient 𝜔𝑜 is  called angular 

frequency (𝜔𝑜 = 2𝜋𝑓𝑜 where 𝑓𝑜 is the linear frequency). The 

maximum value of c is called the amplitude of the oscillation, 

that is a constant in equation (7).  



The period To of the oscillation is the time required for complete 

cycle: 

A light spring is found to stretch an amount b when it supports A 

block of mass m. if the block is pulled downward a distance l 

From its equilibrium position and released at time t = 0, find the 

resulting motion as a function of time  

Example:  

Solution:  

 First to found the spring  stiffness, we note that in the 

static equilibrium condition 



Hence, the angular frequency of oscillation is: 

In order to find constants for the equation of motion  

We have at t = 0: 

But  

Thus   

So 



2-5: Energy Considerations in Harmonic Motion 

 Consider a particle under the action of a linear restoring 

force  𝐹𝑥 = −𝑘𝑥 . Let us calculate the work done by an external 

force in moving the particle from the equilibrium position (x=0) 

to some position x. Assume that we move the particle very 

slowly so that it does not gain any kinetic energy; that is, the 

applied external force is barely greater in magnitude than the 

restoring force −𝑘𝑥 ; hence,  𝐹𝑒𝑥𝑡 = −𝐹𝑥= 𝑘𝑥 so: 

In the case of a spring obeying Hooke's law, the work is stored 

in the spring as potential energy: W = V(x), where 



 Thus, 𝐹𝑥= − dV/dx = − kx, as required by the definition 

of V. The total when the particle is undergoing harmonic 

motion, is given by the sum of the kinetic and potential energies, 

namely 

 The kinetic energy is quadratic in the velocity variable, 

and the potential energy is quadratic in the displacement 

variable. The total energy is constant if there are no other forces 

except the restoring force acting on the particle. 

 The motion of the particle can be found by starting with 

the energy equation (3). Solving for the velocity gives: 



which can be integrated to give t as a function of x as follows: 

 in which C is a constant of  

integration and A is the amplitude given by 

We see from the energy equation (eq.3) that the maximum value 

of the speed, which is call 𝑣𝑚𝑎𝑥 occur at x = 0. we can write: 

 As the particle oscillates, the kinetic and potential 

energies continually change. The constant total energy is entirely 

in the form of kinetic energy at the center, where x = 0 and 

𝑥 = ∓ 𝑣𝑚𝑎𝑥 and it is all potential energy at extrema where 𝑥 = 0 

and x= ∓ A. 
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Analytical Mechanics 

Chapter One 

1-1: Scalar and vectors: 

 A scalar is any positive or negative physical quantity that can be completely 

specified by its magnitude. such as mass, length, density, volume and 

temperature. 

 A vector is any physical quantity that requires both a magnitude and 

direction for its complete description. A vector is shown graphically by an 

arrow. The length of the arrow represents the magnitude of the vector, and a 

fixed axis defines the direction of its line of action .The head of the arrow 

indicates the sense of direction of the vector (Fig 1- 1). 

 

 

    Fig. (1-1) 

 

 For handwritten work, it is often convenient to denote a vector quantity by 

simply drawing an arrow on top it A, (      .In print, vector quantities are 

represented by bold face letters such as A, and its magnitude of the vector is 

italicized, A. 

1-2:Geometric Properties : 

1. Two vectors A and B are equal if they have the same magnitude and direction 

regardless of their initial points. Thus A = B. 

2. A vector having direction opposite to that of vector A but with the same 

magnitude is denoted by -A . 

3. The sum or resultant of vectors A and B of Fig. 1-2(a) below is a vector C 

formed by placing the initial point of B on the terminal point of A and joining 

the initial point of A to the terminal point of B [see Fig. 1-2(b) below].  



2 
 

The sum C is written C = A + B. The definition here is equivalent to the 

parallelogram law for vector addition as indicated in Fig.1-2(c) below. 

 

 

 

 

Fig.(1-2) 

4. The difference of vectors A and B, represented by A - B, is that vector C which 

added to B gives A. Equivalently, A - B may be defined as A + (-B). If A = B, 

then A - B is defined as the null or zero vector and is represented by the  

symbol 0. This has a magnitude of zero but its direction is not defined. 

5. Multiplication of a vector A by a scalar m produces a vector mA with 

magnitude     times the magnitude of A and direction the same as or 

opposite to that of A according as m is positive or negative. If m = 0, mA = 0, 

the null vector. 

1-3: Algebraic Properties of Vectors: 

 The following algebraic properties are consequences of the geometric 

definition of a vector. If A, B and C are vectors, and m and n are scalars, then: 

1. A + B = B + A                         Commutative Law for Addition 

2. A +( B + C) = (A + B) + C     Associative Law for Addition 

3. m(nA)= (mn)A = n(mA)        Associative Law for Multiplication 

4. (m + n)A = mA + nA             Distributive Law 

5. m(A + B) = mA + mB            Distributive Law 

6. A+0=A                          7. A+(-A)= 0 

  Note that in these laws only multiplication of a vector by one or more scalars 

is defined. 
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1-4: Unit Vectors: 

 Unit vectors are vectors having unit length. If A is any vector with length 

 A > 0, then A/A is a unit vector, denoted by a, having the same direction as A. 

 Then A = Aa. The rectangular unit vectors i, j, and k are unit vectors having 

the direction of the positive x, y, and z axes of a rectangular coordinate system 

[see Fig. 1-3]. 

 

 

  Fig.(1-3) 

 

1-5 Components of A Vectors: 

Any vector A in 3 dimensions can be represented with initial point at the 

origin O of a rectangular coordinate system [see Fig. 1-4]. Let (A1;A2;A3) be the 

rectangular coordinates of the terminal point of vector A with initial point at O. 

The vectors A1i;A2j; and A3k are called the rectangular component vectors, or 

simply component vectors, of A in the x, y; and z directions respectively. The 

sum or resultant of A1i;A2j; and A3k is the vector A, so that we can write: 

A = A1i + A2j + A3k 

The magnitude of A is: 

 

In particular, the position vector or radius vector r from O to the point (x; y; z) is 

written: 

r = xi + yj +zk 

and has magnitude: 
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1-6: Dot OR Scalar Product: 

  The dot or scalar product of two vectors A and B, denoted by A.B (read A dot 

B) is defined as the product of the magnitudes of A and B and the of the angle 

between them(projection of A on B). In symbols, 

A . B = AB cos ;    0 <  <  

  Assuming that neither A nor B is the zero vector, an immediate consequence 

of the definition is that A . B = 0 if and only if A and B are perpendicular. Note 

that A . B is a scalar and not a vector. The following laws are valid: 

1. A . B = B . A                                        Commutative Law for Dot Products 

2. A . (B + C) = A . B + A . C                  Distributive Law 

3. m(A . B) = (mA) . B = A . (mB) = (A . B)m,    where m is a scalar. 

4. i . i = j . j = k . k = 1;          i . j = j . k = k . i = 0 

5. If A = A1i + A2j + A3k  and B = B1i + B2j + B3k, then 

                     A . B = A1B1 + A2B2 + A3B3 

In particular, we can write: 

                          A . B = AxBx + AyBy + AzBz 

6. The square of the magnitude of a vector A is given by the dot product of A 

with itself, 

                                     A
2
=    =A.A 

 As an example of the dot product, suppose that 

an object under the action of a constant force 

undergoes a linear displacement s, (as shown in 

Figure 1-4) .By definition, the work W done by 

the force is given by the product of the component 

of the force F in the direction of s, multiplied by 

the magnitude s of the displacement; that is,  
Fig.1-4 
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W=(Fcos)s 

  where  is the angle between F and s. But the expression on the right is just 

the dot product of F and s, that is, 

W=F.s 

1-7: CROSS OR VECTOR PRODUCT: 

  The cross or vector product of A and B is a vector C = A × B (read A cross 

B). The magnitude of A × B is defined as the product of the magnitudes of A and 

B and the sine of the angle between them. The direction of the vector C = A × B is 

perpendicular to the plane of A and B and such that A, B, and C form a right-

handed system. In symbols, 

A × B = AB sin u;           0         

where u is a unit vector indicating the direction of A × B. IfA = B or if A is parallel 

to B, then sin  = 0 and A × B = 0.  

The following laws are valid: 

1. A × B = -B × A                           (Commutative Law for Cross Products Fails) 

2. A × (B + C) = A× B + A × C       Distributive Law 

3. m(A × B) = (mA) × B = A × (mB) = (A × B)m,       where m is a scalar. 

 Also the following consequences of the definition are important: 

4. i × i = j × j = k × k = 0, 

   i × j = k = - j × i;  j × k = i = -k × j ; k × i = j= -i × k 

This cyclic nature of the cross product can be emphasized by 

diagramming the multiplication table as shown in Figure 

5.         = the area of a parallelogram with sides A and B. 

6. If A × B = 0 and neither A nor B is a null vector, then A and B are parallel. 
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7. If A =Axi + Ayj + Azk and B = Bxi + Byj + Bzk, then 

     

   
      

      

  

 

 

The cross product expressed in i, j ,k form is: 

 

 

Let us calculate the magnitude of the cross product. We have 

 

This can be reduced to:  

 

 

from the definition of the dot product, the above equation may be written in the 

form  

 

Taking the square root of both sides of Equation above we can express the 

magnitude of the cross product as 

 

 where  is the angle between A and B. 

physical example of the cross product is the rotational moment (torque)  

 = r × F 

  Let a force F act at a point P(x, y, z), as shown in Figure 1-5, and let the 

vector OP be designated by r; that is, 
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OP=r=ix+jy+kz 

 

 

Figure 1-5: Illustration of the moment of 

a force about a point 0. 

 

The moment N of force, or the torque N, about a given point 0 is defined as 

the cross product 

N= r x F 

Thus, the moment of a force about a point is a having a magnitude and a 

direction. If a single force is applied at a point P on a body that is initially at 

rest and is free to turn about a fixed point 0 as a pivotمحور, then the body tends 

to rotate. The axis of this rotation is perpendicular to the force F, and it is also 

perpendicular to the line OP; therefore, the direction of the torque vector N is 

along the axis of rotation. The magnitude of the torque is given by: 

   =     =rFsin 

in which  is the angle between r and F. Thus,     can be regarded as the 

product of the magnitude of the force and the quantity r sin , which is just 

the perpendicular distance from the line of action of the force to the point 0.  

1-8: Representation of a given vector as the product of a scalar and a 

single unit vector: 

  Consider the equation:  

A = iAx + jAx + kAx 

Multiply and divide on the right by the magnitude of A 

  

 

Now Ax/A = cos, Ay/A = cosβ, and = Az/A cos γ are the direction cosines of the 

vector A, and , β, and γ are the direction angles. Thus, we can write   are the 

direction cosines of vector A, and  are the direction angles. 

 

P 
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 Thus we can write  

A =A(i cos +j cos β + k cos γ) =A(cos ,cos β, cos γ) 

or 

A= nA 

where n is a unit vector whose components are cos ,cos β, and cos γ. Consider any 

other vector B. Clearly, the projection of B on A is just 

 

 

where  is the angle between A and B. 

  

Example 1:  

 1-  Find the angle between the vectors 

 2- Find the vector product of the vectors 

         kjiBandkjiA ˆ2ˆˆˆˆ3ˆ2 


  

solution:     

1- 12)1(13)1(2. 
zzyyxx

BABABABA


 

         unitsAA 74.3)1(32 222 


 

         unitsBB 45.221)1( 222 


 

    and since    
)

.
(coscos. 1

AB

BA
ABBA




 
 

           

011 3.96)109.0(cos)
45.274.3

1
(cos 




 
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2- 

   kjikji

kji

BA ˆ5ˆ3ˆ7)32(ˆ)14(ˆ)16(ˆ

211

132

ˆˆˆ








 

Example 2:   

   A force jiF ˆˆ
1




 was applied on a body at a point p1  such that  

jirpo ˆˆ211 


  and a second force 
kjF ˆˆ

2 


 was applied at a point  

kjirpo ˆˆˆ
22




. Find: (a) the total moment N


  (b) the magnitude of N


  

                                        (c) the direction cosines of N


. 

solution: 

  (a)   111 FrN


    and   222 FrN


  

           

k

kji

N ˆ

011

012

ˆˆˆ

1 


            

kji

kji

N ˆˆˆ2

110

111

ˆˆˆ

2 






 

 The total moment is 

   kjikjikNNN ˆ2ˆˆ2)ˆˆˆ2(ˆ
21 



    

      (b)  
3414 N



 

(c)   

      3

2
cos




N

N x
 , 3

1
cos 

N

N y


   and  3

2
cos 

N

N z
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1-9:Triple Products: 

 The expression 

A. (B × C) 

is called the scalar triple product of A, B, and C. It is a scalar because it is the 

dot product of two vectors. Referring to the determinant expressions for the cross 

product, we see that the scalar triple product may be written: 

          

      

      

      

  

Because the exchange of the terms of two rows or of two columns of a 

determinant changes its sign but not its absolute value, we can derive the 

following useful equation: 

1- (A . B)C ≠ A(B . C) in general 

2- A . (B × C) =B. (C × A) = C . (A× B) = volume of a parallelepiped having A, B, 

and C as edges, or the negative of this volume according as A, B, and C do or do 

not form a right handed system. Thus, the dot and the cross may be interchanged 

in the scalar triple product. 

The expression 

A× (B × C) 

is called the vector triple product. The following equation holds for the vector 

triple product: 

1- A× (B × C) ≠ (A× B) × C     (Associative Law for Cross Products Fails) 

2- A×(B×C)= (A.C) B – (A.B) C 

A×(B×C)=(A . C)B – (B . C) A 

 Vector triple products are particularly useful in the study of rotating 

coordinate systems and rotations of rigid bodies. 
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Example 3: 

  Given the three vectors A = 1, B = i—j, and C = k, find  

   1- A. (B × C) 

   2- A× (B × C) 

Solution: 

 1-  

 

2-  

1-10:Change of Coordinate System :The Transformation Matrix: 

The rotation of a Cartesian coordinate system is an example of an orthogonal 

transformation. Consider the vector A expressed relative to 

the triad ijk: 

 

 

 Relative to a new triad i'j'k' having a different orientation from that of ijk, the 

same vector A is expressed as 

 

 

 Now the dot product A. i' is just Ax', that is, the projection of A on the unit 

vector  i'. Thus, we may write 
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 The scalar products (i . i'), (i . j'), and so on are called the coefficients of 

 transformation. They are equal to the direction cosines of the axes of the primed 

coordinate system relative to the unprimed system. The unprimed components are 

similarly expressed as 

 

 

 

 

The equations of transformation are conveniently expressed in matrix notation. 

Thus, 

 

 

 

The 3-by-3 matrix in Equation above is called the transformation matrix.  

Example 4: 

 Express the vector A = 3i + 2j + k in terms of the triad i'j'k', where the 

x'y'—axes are rotated 45° around the z-axis, with the z- and z'-axes coinciding, as 

shown in Figure. Referring to the figure, we have for the coefficients of 

transformation i . i' = cos 45° and so on, 

we have from the figure:  
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These give: 

 

 

 

so that, in the primed system, the vector A is given by 

 

 

 

 

 

 
































































z

y

x

z

y

x

A

A

A

kkkjki

jkjjji

ikijii

A

A

A

'''

'''

'''

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ

ˆˆˆˆˆˆ






























































z

y

x

z

y

x

A

A

A

A

A

A

100

0
2

1

2

1

0
2

1

2

1






























































1

2

3

100

0
2

1

2

1

0
2

1

2

1

z

y

x

A

A

A

''' ˆˆ
2

1ˆ
2

5
kjiA 





14 
 

Example 5: 

           Find the transformation matrix for a rotation of the primed coordinate 

system through an angle ϕ about the z-axis. We have 

 

 

 

and all other dot products are zero; hence, the 

transformation matrix is: 

 

 

 

       the transformation matrix for a rotation about a different coordinate axis-say, 

the y-axis through an angle () given by the matrix 

 

 

 

       Consequently, the matrix for the combination of two rotations, the first being 

about the z-axis (angle ϕ) and the second being about the new y' -axis (angle (), 

is given by the matrix product 

 

 

 

Now matrix multiplication is, in general, noncommutative; therefore, we 

might expect that the result would be different if the order of the rotations, 

and, therefore, the order of the matrix multiplication, were reversed. 
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Example6: 

 Express the vector          in terms of the triad          where the x' z' axes are 

rotated 60 degree around the y axis, and the y' axes coinciding. 

Solution: 

 From the figure . we can see that 

 

 

 

     the rest are zero 

     Therefore the transformation matrix and the equation of transformation 

becomes: 

 

 

 

 

 

 

 

 

 

 

 

 

ji ˆˆ ''' ˆˆˆ kji
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Solved Problems (page 44): 

1.1: Given the two vectors A = i +j and B =j + k, find the following: 

(a) A+B and       (b) 3A-2B (c) A. B (d) A×B and       

Solution: 

 

 

 

 

 

 

 

 

 1.2 Given the three vectors A = 2i +j, B = i + k, and C = 4j, find the following: 

(a) A. (B + C) and (A + B) .C     (b) A.(B×C) and (A×B).C  

(c) A×(B×C) and (A×B)×C 

Solution:  
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 1.3: Find the angle between the vectors A = ai + 2aj and B = ai + 2aj + 3ak. (Note: 

These two vectors define a face diagonal and a body diagonal of a rectangular 

block of sides a, 2a, and 3a.) 

Solution: 

 

 

 

 

1.4 Prove that the projection of A on B is equal to A .b, where b is a unit vector in 

the direction of B. 

 

Solution: 

      Through the initial and terminal points of A pass planes 

perpendicular to B at G and H respectively, as in the 

adjacent Figure: then 

Projection of A on B =    =    = Acos  = A .b 

 

1.5  

 Solution: 
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1.6 

Solution: 

 

 

 

 

 

 

 Problems (homework) 

Answer to the following problems. 

1-  If A = 5i − j− 2k  and  B = 2i + 3j−k , find 

(a) A×B and B×A     (b)       

(c) sin φ and φ where φ is the smaller angle between A and B. 

(d) (A×B).B, and (A×B).A. 

2-  If A = 3i − 2j+ 4k , B = 2i − 4j+ 5k , and C = i + j− 2k , find 

(a) A×(B×C)      (b) (A×B)×C 

3-  Evaluate 

(a) 2i×(3j− 4k)    (b) (i + 2j)×k  (c ) (2i − 4j)×(i + k) 

4- prove that the transformation matrix for a rotation about y-axis through an 

angle () is given by the matrix : 
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Analytical Mechanics 

Chapter One 

1-1: Scalar and vectors: 

 A scalar is any positive or negative physical quantity that can be completely 

specified by its magnitude. such as mass, length, density, volume and 

temperature. 

 A vector is any physical quantity that requires both a magnitude and 

direction for its complete description. A vector is shown graphically by an 

arrow. The length of the arrow represents the magnitude of the vector, and a 

fixed axis defines the direction of its line of action .The head of the arrow 

indicates the sense of direction of the vector (Fig 1- 1). 

 

 

    Fig. (1-1) 

 

 For handwritten work, it is often convenient to denote a vector quantity by 

simply drawing an arrow on top it A, (      .In print, vector quantities are 

represented by bold face letters such as A, and its magnitude of the vector is 

italicized, A. 

1-2:Geometric Properties : 

1. Two vectors A and B are equal if they have the same magnitude and direction 

regardless of their initial points. Thus A = B. 

2. A vector having direction opposite to that of vector A but with the same 

magnitude is denoted by -A . 

3. The sum or resultant of vectors A and B of Fig. 1-2(a) below is a vector C 

formed by placing the initial point of B on the terminal point of A and joining 

the initial point of A to the terminal point of B [see Fig. 1-2(b) below].  
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The sum C is written C = A + B. The definition here is equivalent to the 

parallelogram law for vector addition as indicated in Fig.1-2(c) below. 

 

 

 

 

Fig.(1-2) 

4. The difference of vectors A and B, represented by A - B, is that vector C which 

added to B gives A. Equivalently, A - B may be defined as A + (-B). If A = B, 

then A - B is defined as the null or zero vector and is represented by the  

symbol 0. This has a magnitude of zero but its direction is not defined. 

5. Multiplication of a vector A by a scalar m produces a vector mA with 

magnitude     times the magnitude of A and direction the same as or 

opposite to that of A according as m is positive or negative. If m = 0, mA = 0, 

the null vector. 

1-3: Algebraic Properties of Vectors: 

 The following algebraic properties are consequences of the geometric 

definition of a vector. If A, B and C are vectors, and m and n are scalars, then: 

1. A + B = B + A                         Commutative Law for Addition 

2. A +( B + C) = (A + B) + C     Associative Law for Addition 

3. m(nA)= (mn)A = n(mA)        Associative Law for Multiplication 

4. (m + n)A = mA + nA             Distributive Law 

5. m(A + B) = mA + mB            Distributive Law 

6. A+0=A                          7. A+(-A)= 0 

  Note that in these laws only multiplication of a vector by one or more scalars 

is defined. 
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1-4: Unit Vectors: 

 Unit vectors are vectors having unit length. If A is any vector with length 

 A > 0, then A/A is a unit vector, denoted by a, having the same direction as A. 

 Then A = Aa. The rectangular unit vectors i, j, and k are unit vectors having 

the direction of the positive x, y, and z axes of a rectangular coordinate system 

[see Fig. 1-3]. 

 

 

  Fig.(1-3) 

 

1-5 Components of A Vectors: 

Any vector A in 3 dimensions can be represented with initial point at the 

origin O of a rectangular coordinate system [see Fig. 1-4]. Let (A1;A2;A3) be the 

rectangular coordinates of the terminal point of vector A with initial point at O. 

The vectors A1i;A2j; and A3k are called the rectangular component vectors, or 

simply component vectors, of A in the x, y; and z directions respectively. The 

sum or resultant of A1i;A2j; and A3k is the vector A, so that we can write: 

A = A1i + A2j + A3k 

The magnitude of A is: 

 

In particular, the position vector or radius vector r from O to the point (x; y; z) is 

written: 

r = xi + yj +zk 

and has magnitude: 
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1-6: Dot OR Scalar Product: 

  The dot or scalar product of two vectors A and B, denoted by A.B (read A dot 

B) is defined as the product of the magnitudes of A and B and the of the angle 

between them(projection of A on B). In symbols, 

A . B = AB cos ;    0 <  <  

  Assuming that neither A nor B is the zero vector, an immediate consequence 

of the definition is that A . B = 0 if and only if A and B are perpendicular. Note 

that A . B is a scalar and not a vector. The following laws are valid: 

1. A . B = B . A                                        Commutative Law for Dot Products 

2. A . (B + C) = A . B + A . C                  Distributive Law 

3. m(A . B) = (mA) . B = A . (mB) = (A . B)m,    where m is a scalar. 

4. i . i = j . j = k . k = 1;          i . j = j . k = k . i = 0 

5. If A = A1i + A2j + A3k  and B = B1i + B2j + B3k, then 

                     A . B = A1B1 + A2B2 + A3B3 

In particular, we can write: 

                          A . B = AxBx + AyBy + AzBz 

6. The square of the magnitude of a vector A is given by the dot product of A 

with itself, 

                                     A
2
=    =A.A 

 As an example of the dot product, suppose that 

an object under the action of a constant force 

undergoes a linear displacement s, (as shown in 

Figure 1-4) .By definition, the work W done by 

the force is given by the product of the component 

of the force F in the direction of s, multiplied by 

the magnitude s of the displacement; that is,  
Fig.1-4 
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W=(Fcos)s 

  where  is the angle between F and s. But the expression on the right is just 

the dot product of F and s, that is, 

W=F.s 

1-7: CROSS OR VECTOR PRODUCT: 

  The cross or vector product of A and B is a vector C = A × B (read A cross 

B). The magnitude of A × B is defined as the product of the magnitudes of A and 

B and the sine of the angle between them. The direction of the vector C = A × B is 

perpendicular to the plane of A and B and such that A, B, and C form a right-

handed system. In symbols, 

A × B = AB sin u;           0         

where u is a unit vector indicating the direction of A × B. IfA = B or if A is parallel 

to B, then sin  = 0 and A × B = 0.  

The following laws are valid: 

1. A × B = -B × A                           (Commutative Law for Cross Products Fails) 

2. A × (B + C) = A× B + A × C       Distributive Law 

3. m(A × B) = (mA) × B = A × (mB) = (A × B)m,       where m is a scalar. 

 Also the following consequences of the definition are important: 

4. i × i = j × j = k × k = 0, 

   i × j = k = - j × i;  j × k = i = -k × j ; k × i = j= -i × k 

This cyclic nature of the cross product can be emphasized by 

diagramming the multiplication table as shown in Figure 

5.         = the area of a parallelogram with sides A and B. 

6. If A × B = 0 and neither A nor B is a null vector, then A and B are parallel. 
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7. If A =Axi + Ayj + Azk and B = Bxi + Byj + Bzk, then 

     

   
      

      

  

 

 

The cross product expressed in i, j ,k form is: 

 

 

Let us calculate the magnitude of the cross product. We have 

 

This can be reduced to:  

 

 

from the definition of the dot product, the above equation may be written in the 

form  

 

Taking the square root of both sides of Equation above we can express the 

magnitude of the cross product as 

 

 where  is the angle between A and B. 

physical example of the cross product is the rotational moment (torque)  

 = r × F 

  Let a force F act at a point P(x, y, z), as shown in Figure 1-5, and let the 

vector OP be designated by r; that is, 



7 
 

OP=r=ix+jy+kz 

 

 

Figure 1-5: Illustration of the moment of 

a force about a point 0. 

 

The moment N of force, or the torque N, about a given point 0 is defined as 

the cross product 

N= r x F 

Thus, the moment of a force about a point is a having a magnitude and a 

direction. If a single force is applied at a point P on a body that is initially at 

rest and is free to turn about a fixed point 0 as a pivotمحور, then the body tends 

to rotate. The axis of this rotation is perpendicular to the force F, and it is also 

perpendicular to the line OP; therefore, the direction of the torque vector N is 

along the axis of rotation. The magnitude of the torque is given by: 

   =     =rFsin 

in which  is the angle between r and F. Thus,     can be regarded as the 

product of the magnitude of the force and the quantity r sin , which is just 

the perpendicular distance from the line of action of the force to the point 0.  

1-8: Representation of a given vector as the product of a scalar and a 

single unit vector: 

  Consider the equation:  

A = iAx + jAx + kAx 

Multiply and divide on the right by the magnitude of A 

  

 

Now Ax/A = cos, Ay/A = cosβ, and = Az/A cos γ are the direction cosines of the 

vector A, and , β, and γ are the direction angles. Thus, we can write   are the 

direction cosines of vector A, and  are the direction angles. 

 

P 
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 Thus we can write  

A =A(i cos +j cos β + k cos γ) =A(cos ,cos β, cos γ) 

or 

A= nA 

where n is a unit vector whose components are cos ,cos β, and cos γ. Consider any 

other vector B. Clearly, the projection of B on A is just 

 

 

where  is the angle between A and B. 

  

Example 1:  

 1-  Find the angle between the vectors 

 2- Find the vector product of the vectors 

         kjiBandkjiA ˆ2ˆˆˆˆ3ˆ2 


  

solution:     

1- 12)1(13)1(2. 
zzyyxx

BABABABA


 

         unitsAA 74.3)1(32 222 


 

         unitsBB 45.221)1( 222 


 

    and since    
)

.
(coscos. 1

AB

BA
ABBA




 
 

           

011 3.96)109.0(cos)
45.274.3

1
(cos 




 
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2- 

   kjikji

kji

BA ˆ5ˆ3ˆ7)32(ˆ)14(ˆ)16(ˆ

211

132

ˆˆˆ








 

Example 2:   

   A force jiF ˆˆ
1




 was applied on a body at a point p1  such that  

jirpo ˆˆ211 


  and a second force 
kjF ˆˆ

2 


 was applied at a point  

kjirpo ˆˆˆ
22




. Find: (a) the total moment N


  (b) the magnitude of N


  

                                        (c) the direction cosines of N


. 

solution: 

  (a)   111 FrN


    and   222 FrN


  

           

k

kji

N ˆ

011

012

ˆˆˆ

1 


            

kji

kji

N ˆˆˆ2

110

111

ˆˆˆ

2 






 

 The total moment is 

   kjikjikNNN ˆ2ˆˆ2)ˆˆˆ2(ˆ
21 



    

      (b)  
3414 N



 

(c)   

      3

2
cos




N

N x
 , 3

1
cos 

N

N y


   and  3

2
cos 

N

N z
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1-9:Triple Products: 

 The expression 

A. (B × C) 

is called the scalar triple product of A, B, and C. It is a scalar because it is the 

dot product of two vectors. Referring to the determinant expressions for the cross 

product, we see that the scalar triple product may be written: 

          

      

      

      

  

Because the exchange of the terms of two rows or of two columns of a 

determinant changes its sign but not its absolute value, we can derive the 

following useful equation: 

1- (A . B)C ≠ A(B . C) in general 

2- A . (B × C) =B. (C × A) = C . (A× B) = volume of a parallelepiped having A, B, 

and C as edges, or the negative of this volume according as A, B, and C do or do 

not form a right handed system. Thus, the dot and the cross may be interchanged 

in the scalar triple product. 

The expression 

A× (B × C) 

is called the vector triple product. The following equation holds for the vector 

triple product: 

1- A× (B × C) ≠ (A× B) × C     (Associative Law for Cross Products Fails) 

2- A×(B×C)= (A.C) B – (A.B) C 

A×(B×C)=(A . C)B – (B . C) A 

 Vector triple products are particularly useful in the study of rotating 

coordinate systems and rotations of rigid bodies. 
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Example 3: 

  Given the three vectors A = 1, B = i—j, and C = k, find  

   1- A. (B × C) 

   2- A× (B × C) 

Solution: 

 1-  

 

2-  

1-10:Change of Coordinate System :The Transformation Matrix: 

The rotation of a Cartesian coordinate system is an example of an orthogonal 

transformation. Consider the vector A expressed relative to 

the triad ijk: 

 

 

 Relative to a new triad i'j'k' having a different orientation from that of ijk, the 

same vector A is expressed as 

 

 

 Now the dot product A. i' is just Ax', that is, the projection of A on the unit 

vector  i'. Thus, we may write 
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 The scalar products (i . i'), (i . j'), and so on are called the coefficients of 

 transformation. They are equal to the direction cosines of the axes of the primed 

coordinate system relative to the unprimed system. The unprimed components are 

similarly expressed as 

 

 

 

 

The equations of transformation are conveniently expressed in matrix notation. 

Thus, 

 

 

 

The 3-by-3 matrix in Equation above is called the transformation matrix.  

Example 4: 

 Express the vector A = 3i + 2j + k in terms of the triad i'j'k', where the 

x'y'—axes are rotated 45° around the z-axis, with the z- and z'-axes coinciding, as 

shown in Figure. Referring to the figure, we have for the coefficients of 

transformation i . i' = cos 45° and so on, 

we have from the figure:  
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so that, in the primed system, the vector A is given by 
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Example 5: 

           Find the transformation matrix for a rotation of the primed coordinate 

system through an angle ϕ about the z-axis. We have 

 

 

 

and all other dot products are zero; hence, the 

transformation matrix is: 

 

 

 

       the transformation matrix for a rotation about a different coordinate axis-say, 

the y-axis through an angle () given by the matrix 

 

 

 

       Consequently, the matrix for the combination of two rotations, the first being 

about the z-axis (angle ϕ) and the second being about the new y' -axis (angle (), 

is given by the matrix product 

 

 

 

Now matrix multiplication is, in general, noncommutative; therefore, we 

might expect that the result would be different if the order of the rotations, 

and, therefore, the order of the matrix multiplication, were reversed. 
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Example6: 

 Express the vector          in terms of the triad          where the x' z' axes are 

rotated 60 degree around the y axis, and the y' axes coinciding. 

Solution: 

 From the figure . we can see that 

 

 

 

     the rest are zero 

     Therefore the transformation matrix and the equation of transformation 

becomes: 

 

 

 

 

 

 

 

 

 

 

 

 

ji ˆˆ ''' ˆˆˆ kji
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Solved Problems (page 44): 

1.1: Given the two vectors A = i +j and B =j + k, find the following: 

(a) A+B and       (b) 3A-2B (c) A. B (d) A×B and       

Solution: 

 

 

 

 

 

 

 

 

 1.2 Given the three vectors A = 2i +j, B = i + k, and C = 4j, find the following: 

(a) A. (B + C) and (A + B) .C     (b) A.(B×C) and (A×B).C  

(c) A×(B×C) and (A×B)×C 

Solution:  
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 1.3: Find the angle between the vectors A = ai + 2aj and B = ai + 2aj + 3ak. (Note: 

These two vectors define a face diagonal and a body diagonal of a rectangular 

block of sides a, 2a, and 3a.) 

Solution: 

 

 

 

 

1.4 Prove that the projection of A on B is equal to A .b, where b is a unit vector in 

the direction of B. 

 

Solution: 

      Through the initial and terminal points of A pass planes 

perpendicular to B at G and H respectively, as in the 

adjacent Figure: then 

Projection of A on B =    =    = Acos  = A .b 

 

1.5  

 Solution: 
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1.6 

Solution: 

 

 

 

 

 

 

 Problems (homework) 

Answer to the following problems. 

1-  If A = 5i − j− 2k  and  B = 2i + 3j−k , find 

(a) A×B and B×A     (b)       

(c) sin φ and φ where φ is the smaller angle between A and B. 

(d) (A×B).B, and (A×B).A. 

2-  If A = 3i − 2j+ 4k , B = 2i − 4j+ 5k , and C = i + j− 2k , find 

(a) A×(B×C)      (b) (A×B)×C 

3-  Evaluate 

(a) 2i×(3j− 4k)    (b) (i + 2j)×k  (c ) (2i − 4j)×(i + k) 

4- prove that the transformation matrix for a rotation about y-axis through an 

angle () is given by the matrix : 
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1-1: Scalar and vectors 

 A scalar is any positive or negative physical quantity that 

can be completely specified by its magnitude. such as mass, length, 

density, volume and temperature. 

 A vector is any physical quantity 

that requires both a magnitude and 

direction for its complete description. A 

vector is shown graphically by an arrow. 

The length of the arrow represents the 

magnitude of the vector, and a fixed axis 

defines the direction of its line of action 

.The head of the arrow indicates the sense 

of direction of the vector (as shown in 

figure). 



 For handwritten work, it is often convenient to denote a 

vector quantity by simply drawing an arrow on top it A, (A). In 

print, vector quantities are represented by bold face letters such as 

A, and its magnitude of the vector is italicized, A. 

1-2:Geometric Properties : 

1. Two vectors A and B are equal if 

they have the same magnitude and 

direction regardless of their initial 

points. Thus A = B. 

2. A vector having direction opposite to 

that of vector a but with the same 

magnitude is denoted by -a . 



3. The sum or resultant of vectors A 

and B of Fig. 1-2(a) below is a 

vector C formed by placing the 

initial point of B on the terminal 

point of A and joining the initial 

point of A to the terminal point 

of B [see Fig. 1-2(b) below].  

The sum C is written C = A + B. 

The definition here is equivalent 

to the parallelogram law for 

vector addition as indicated in 

Fig.1-2(c) below. 



4. The difference of vectors a and b, 

represented by A - B, is that vector C 

which added to B gives A. Equivalently,  

A - B may be defined as A + (-B).  

If A = B, then A ̶̶ B is defined as the null 

or zero vector and is represented by the  

symbol 0. This has a magnitude of zero 

but its direction is not defined. 

5. Multiplication of a vector v by a scalar 

m produces a vector mv with 

magnitude times the magnitude of v 

and direction the same as or opposite to 

that of v according as m is positive or 

negative. If m = 0, mv = 0, the null 

vector. 



1-3: Algebraic Properties of Vectors: 

 The following algebraic properties are consequences of the 

geometric definition of a vector. If A, B and C are vectors, and m 

and n are scalars, then: 

1. A + B = B + A                        Commutative Law for Addition 

2. A +( B + C) = (A + B) + C    Associative Law for Addition 

3. m(nA)= (mn)A = n(mA)       Associative Law for Multiplication 

4. (m + n)A = mA + nA             Distributive Law 

5. m(A + B) = mA + mB           Distributive Law 

6. A+0=A                                

7. A+(-A)= 0 

Note that in these laws only multiplication of a vector by one or    

 more scalars is defined. 



1-4: Unit Vectors: 

 Unit vectors are vectors having unit length. If A is 

any vector with length A > 0, then A/A is a unit vector, 

denoted by a, having the same direction as A. Then  

A = Aa. The rectangular unit vectors i, j, and k are unit 

vectors having the direction of the positive x, y, and z 

axes of a rectangular coordinate system [see Fig. 1-3]. 

Fig. 1-3 



1-5: Components of A Vectors: 

 Any vector A in 3 dimensions can be represented with 

initial point at the origin O of a rectangular coordinate system  

[see Fig. 1-3]. Let (Ax;Ay;Az) be the rectangular coordinates of the 

terminal point of vector A with initial point at O. The vectors Ax i; 

Ay j; and Az k are called the rectangular component vectors, or 

simply component vectors, of A in the x, y; and z directions 

respectively. The sum or resultant of Ax i; Ay j;  and Azk is the 

vector A, so that we can write: 

 A = Ax i + Ay j + Az k 

The magnitude of A is: 



 In particular, the position vector or radius vector r from O to 

the point (x; y; z) is written: 

A= r = xi + yj +zk 

and has magnitude: 
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