


The del operator (V) in rectangular coordinate is given by:

A L
dx ]dy dz
The del operator (V) Is a vector that has no physical meaning

or vector direction by itself

Let ¢ = (X, Y, z) be a differentiable at any point, therefore the
gradient of ¢
o, _.d¢ d¢ _do
Vp = s h k= 1- V(A+B)=VA +VB

The following 2- V(AB)=AVB + BVA

computation formulas A] _ BVA-AVB
d 3- V[ﬁ] =—

on gradient should be -
noted: 4-VV " =nyrlyy




Let ¥ (x,y,z) = L vy + j v, + k v, then the divergence of ¥
(written divor 7 - B)is:

Note the following properties of the divergence of a vector
1- Its produces a scalar.

2- The divergence of a scalar ¥, div ¥ make no sense.

3-V.(A+B)=V.A+V.B

V- v<0 V-v>0 V-v=0
4-V(VA=VV.A+A. WV PN PO
5- V.V# V.V SN N g




The curl of the vector field ¥ (x,y,2) =t v, + vy + k v,
Is denoted by curlv or V X # is:

i j k
L . |ld d d
curlv=Vxv= dx dy dz Vector Field V(x,y,z)
Ve Uy Uy /
Note the following properties of the curl of a vector C
The curl of a vector is another vector. l 1‘ X
The curl of a scalar ¥, VX V, makes no sense. ‘ S

Vx(A+BY)= VXA +VXB
V(A B)=A(V.B)-B(V.A)+(B.V)A-(A.V)B

The divergence of the curl of a vector vanishes,‘ thatis, V.(VxA)=0

The curl of the gradient of a scalar is vanishes that is, Vx VV'=0

V.(Vu) = V?u Laplacian of u




We can defined d# and V in the

1- Cartesian Coordinate
dr = idx + jdy + kdz

T=1 L ;4 5l
 dx }d * dz
2- Cylindrical Coordinate

V=2 d+" 1 d ." d
o My 88 a
RaR T %9 Rdep T % 4,

3- Spherical Coordinate ,
dr = é,.dr + é,rd6 + e¢rsm9dgb

o, ,1d 1 d
dr ' %rdo" “®rsindd




The potential that represents an inverse square force is V(r) = % :

—

where 7 = (x2 + y2 + z2)1/2, Using the definition F = — 7'V,
calculate the component of this force.

Another solution by using spherical
coordinate :




If ¢ = %where r = (x2+ y2 +2z2)1/2 Show that V¢p = ;—;‘

gy 0z

M~ ) ﬁa ’;
v¢m(:§u £ e LA

) (2 + v+ )12

2 2

T U R
m(—--»«-,;?.x:-- 2y

!
T2

2z k) (x? 4 y* 4 27y

L x4 y] 4+ 2b?

F

}*1‘

+ ‘Fm -idh e ) ,: riasol T
- ’ DI x

Find a unit vector normal to the surface xy? + xz = 1 at point (-1,1,1).

d 40

d
‘V(x)-=2 +x2) = (z ™ + j . + kﬁ-:) (.':rj,v2 <= x2)

vector

a unit vector =-

= (v* + 20 + (2xv) ] +xk
=2i =2 —k,at(—1.1,1)

its magnitude

(@ — 2] — DI@) + (<2 + (~ 17

2.,
3

2, 1.

= e o o f

3 3




a: Show that F = (2xy + z2)1 + x2j + 2xzk is conservative force field

b: Find the scalar field
c: Find the work done in moving a unit mass in the field from point

(1,0,1) to (2,1,-1)scalar field

_ (a) It is sufficient to show that Curl F = 0

VXF:

i j k
__t?__ Jd d
dx  dy 09z

2xy + z° x% 2xz

=i.0~j(2z —22) + k(2x = 2x) = 0

(b) d® = F.dr = ((2xy + 2°)i + x°j + 2xzk)).(idx + jdy + kdz)
= (2xy + z:z) dx + x° dy + 2xzdz
= (2xydx +x* dy) + (2% dx + 2xzdz)
= d(x?y) + d(z%x) = d(x*y + x2%)
Therefore ® = x*y + xz? + constant

(c) Work done = &, — & = 5.0



If p = x%yz3 and A = xzi — y?j + 2x2yk , find:
a- Vo b-V.A c- VxA d- div(¢pA) e- curl (¢pA)

. I B J a S
(¢) Vo=|i—+]—+ L efv = gl + _Bg' Mk = —( X )z )1 —_(.x"“}-'z’)j + 7{;x'3)’§)k
ax ’ dz ax dy dz ix Jy az

= 2xyzi + X7+ 3%k

_. ) 4 aN X .
(b V- «“(-‘— 2k )- vtk
(b) !8r+J3y+ PR {xzi — p7j + 2x7yK)

'~—(m+—-( y‘)+—( 2 ) =2-2y

i ] k
’ . {] D . 9, oo
(¢) VxA= (t—-l— —+ kd_) x {xzi — 3+ 2x7 k) = lafox 8/y 8/
Xz —y 2%y

3 d a i) ) i - d '
) s —(x)—— (W Vi [ L) — L) MK
}( 247 %) ( ¥ })H— (a:(.l-) ax(-.\ }))3+ (Bx( 1) 8)'("))'\

= 2x"i 4 (x — 4xp)j




‘ HA = x3yz*i — x%y3237 + 2x*y? 23k

i(d, ) div{pA) =V - -(¢A)= V- (.'.\’.3 y:"i — .\'2_1’3 = j+ 2x _a.f?':3k)

oy

= (y:z )+——( x* ¥ 3 )+—("\ 1“:3)
| »8,.\

. »
‘: 3,\'.“_;',.-4 — ’h" 223 46t F“Z

(¢} curl (pA) = V x (¢pA)

34 2 3.3, 2 3
=V x (.X’g_j.-'f i— X ysz i+ 2.\'4‘1’ k)

i i k
= | d/ax  doy - 9oz
- 2.3.3 2.3
Yyt Xy 2%y

-—(4\1_ +3\; :)l+(4\"\:‘—-—3\ 15‘. )j—("\t +\_)k




Prove V.(pA) = (Vo) . A+ (V.A) ,where A=iA.+j A+ kKA:
- V- ((i)A) =Y = (((L‘[}i + Qs.".‘lgj + Q)A:;k)

i d ) |
= (¢A)) +—(dA2) +—(dA3)
SAN dy i

A — A — A1 _ = —
0.x AT Y 2+ a7 +'¢{ AN u Jdv + oz

it 4 .._, - —k) (Ayi+ Aaj+ Ask)

a. o, 4N . .
—— (Z) —-l -+ -——j -+ __— kK- (‘A il -+ .f.ll] + A;k)
BAGA dy dz

= (V) - A + (V. A)




Prove that div curl A=0, where A=1A. + ] A:+ KA

ik

diveurl A =V-(VXA)=V-.1d/dxy a/dy djfoz]|

Ay 045\, [oA; 8A43\. (94, 3‘,4,')
= " o - o i r k

. d {0Ax 3,.-12)+ d {04y o4z i 3 (04, dA,
v\ ay dz ay \ iz ax dz \ dx dy

32.--"13 32:42 + 32‘4; 32:"13 + 32!{2 32.4 1 |
oxdy oxdz | dydz  dyax  prax  ozay =0







The position of a particle in the case of three-dimensional
motion can be described in cylindrical coordinates R, ¢, z. The
position vector Is then written as:

P Ry T —

where ep Is a unit radial
vector in the xy plane and e, Is
the unit vector In the z direction.
A third unit vector ey Is needed
so that the three e ey e, Vvectors

constitute a right-handed triad, as

Illustrated in Figure. We note that
k=e,.




As before the velocity and acceleration vectors can be found
by differentiating equation (1). In the same way as we have done
before for the plane polar coordinate shows that:

dé.,
dt

¢° A d deA¢ ¢' A
=de, and —L=-ge

The unit vector e, does not change in direction, so Its time
derivative Is zero.

" |
d
SO ez=O
dt
Ve T ReRT Ry T et iy

Substituting for the time derivative, we get:




Substituting for the time derivative, we get:

d= Rép+ R dpéy + Rpéy + RPé, — Rp2ép + 78,

G=(R-Rp*)ey +(2RP+ RP)é, + 56, —woememnnn 3

An alternative way of obtaining the derivative of the unit
vectors Is to differentiating the relationships between the fixed unit
triad 1) k and the rotated e ey €.




The relationship between the unit vectors of Cartesian and
cylindrical coordinate

e, |=| —sing cosg O

(é,) ( cosg sing 0)(7)
¢ J

The relationships between the fixed unit triad 1 j k and the
rotated triad e ey, e IS:

&, =icos ¢+ jsin ¢
e, =—ismg@+ jcos ¢

6. =k




When spherical coordinates r, 0, ¢ are employed to describe
the position of a particle, the position vector Is written as the
product of the radial distance r and the unit radial vector e,., as
with plane polar coordinates. Thus,

r=re,

The direction of e, IS
now specified by the two angles
0 and ¢. We introduce two more
unit vectors, e, and ey, as

shown in Figure




The velocity vector

To express the derivative de,./dt in terms of the unit vectors in
the rotated triad. we can derive relationships between the i1 j k and e,
eg ey triads. For example, because any vector can be expressed In

terms of its projections on to the X, y, z, coordinate axes

e, =ie, i)+ j(e,* j)+ke, k)

e.-. i 1S the projection of the unit vector e, directly onto the
unit vector I. and it is equal to cos a, ( as shown in equation)

‘Bcosﬂ=ﬁ=B-n
A

|
the cosine of the angle between those two unit vectors.




We need to express this dot product in terms of 6 and ¢, not
a. We can obtain the desired relation by making two successive
projections to get to the x-axis. First project e, onto the xy plane,
and then project from there onto the x-axis. The first projection gives
us a factor of sin 6, while the second yields a factor of cos ¢. The
magnitude of the projection obtained in this way Is the desired dot
product:

é -i=sinfcos¢, & -j=sinfsing ‘and e -k=cos@
¥ ¥

r

The relationships for eg and ey can be obtained as above,
yielding the desired relations
e,=isinfcosp+jsinOsing+kcos6d
eg=icos@cos@+jcosOsing—ksin@ 8

e,=—ising+jcos¢
which express the unit vectors of the rotated triad in terms of
the fixed triad 1 j k.




Differentiate the first equation with respect to time. The result is

de . . : . . . . A
;’ =i(fcosBcosp—@sinfsing) + j(@cosfsing+ ¢sin@cosgp) —kOsinf
4

By using the expressions for eg and e In Equation 3 we find
that the above equation reduces to
de . -
r=¢@gsinfd+é b
dat ¢ ?

The other two derivatives are found through a similar procedure. The
results are:

d —
T:t_e =—e 0 +e,pcosf

dey _ e @sinf—e, Ppcosf ‘
dt g




To find v, we insert the expression for de,./dt into Equation 2
The final result is:

giving the veloc:|ty vector In terms of 1ts components In the rotated
triad eg ey, €.

To find the acceleration, we differentiate the above expression
with respect to time. This gives

dv de d(r¢sin 0 de d(rf |
a= E -er+r dtr+e¢ ( ¢dt )+r¢sm9—c—i-f+e9 dt)+ OE
Upon using the derivatives of the unit vectors, the above

expression for the acceleration reduces to:

v=e.r+ e¢r¢ sin 6 + e9r9

a=(7—r¢’sin>0—r0%)e,_+(r6+270 —rd”sinOcosb)e, ‘

+ (r¢sin O + 2@ sin O + 2r6¢ cos O)e,

giving the acceleration vector in terms of its components In the rotated
triad eg ey e;.




A Dbead slides on a wire bent into the form of a helix, the
motion of the bead being given In cylindrical coordinates by R = b,
d= ot, z = ct. Find the velocity and acceleration vectors as functions
of time.

Differentiating, we find R=R=0 , ¢ =w,¢=0,2=c,
Z = 0,50, from Equations of velocity and acceleration we have:

v=Ré,+Rpé, +z¢,
v=ba)e¢+cez
a=(R-R$*)e, +(2RP+ Rp)é, + zé.
a = -bafe,
00000000




Chapter One
_ecture (11)

Solved Problems (Chapter One)

Analytical mechanics
Dr. Ali A. Mohammed Saleh



1: Assume that two vectors A and B are known. Let C be an unknown

vector such that A. C = u i1s a known quantity and A x C = B. Find
C interms of A, B, u, and the magnitude of A.

C, =Csind = -1-3-
]

C,=C
Bx A




2: Find a unit vector normal to the plane containing the two vectors:

~

A=2i+j-k and B=i-j+2k

the vector

nit vector = ———
its _magnitude




3:A racing car moves on a circle of constant radius b. If the speed of
the car varies with time t according to the equation v = ct where c
IS a positive constant, show that the angle between the velocity

vector and the acceleration vector is 45° at time t = /b /c

(Hint: At this time the tangential and normal components of the
acceleration are equal in magnitude.)

. v? c?t?
A=VPT+ —N=cCT+




4: A small ball is fastened to a long rubber band and twirled around in
such away that the ball moves in an elliptical path given by the
equation r(t) =1 b cos ot +J 2b sin ot , where b and o are constants.
Find the speed of the ball as a function of t. In particular, find v at
t =0 and at t = n/2 w, at which times the ball is, respectively, at its
minimum and maximum distances from the origin.

1) = —ibewsin (wr)+ j2bw cos(wr)




5: A bee goes out from its hive in a spiral path given in plane polar
coordinates by r = be*t 8 = ct where b, k, and c are positive
constants. Show that the angle between the velocity vector and the
acceleration vector remains constant as the bee moves outward.

(Hint: Findv.a/va)

i=(F-r0?)é, +(rf+270)¢, = bk —c?)eke, +2bcke"e,

Bk(k* =)™ +2b°c ke™

“be" (ﬁ:2 +c? )5 he [(kz ~¢! )3 + 'ﬁl‘czkz ]2

k(k®+c’
cos¢=____(_—.tf—)-——-—= k

a constant

' .

’)% (° +c’) | (k2 +c*)?




6:Prove that v.a = vv and, hence, that for a moving particle v and a
are perpendicular to each other if the speed v is constant.

(Hint: Differentiate both sides of the equation v - v = v with
respect to t. Note, v is not the same as |a| . It is the magnitude of
the acceleration of the particle along its instantaneous direction of

motion.)

2=

——

V-d =WV




7: Show that the tangential component of the acceleration of a moving
particle is given by the expression ¢, =$ and the normal
component Is:

(v-a)? ]112




8: Use vector algebra to derive the following trigonometric identities
(a) cos(6— ¢) = cosOcosg+ sinfsing
(b) sin(@— ¢) =sinO cosg— cos sing

bxa =_|l;|sin(0-—¢)= (féosO-i-_;'sinﬁ)x(::cos¢+}sin(p

& - p)=sinfcos@-cosfsing



Chapter One
The Vectors (2)

1.6: Dot or Scalar Product

1.7: Cross or Vector Product



Dot OR Scalar Product:

The dot or scalar product of two vectors A and B, denoted
by A.B (read A dot B) is defined as the product of the magnitudes
of A and B and the of the angle between them(projection of A on
B). In symbols,

A.B=ABcosO; 0<0O<m

Assuming that neither A nor B is the zero vector, an
Immediate consequence of the definition is that A . B = 0 if and
only if A and B are perpendicular. Note that A . B is a scalar and
not a vector.



The following laws are valid:
1.A.B=B.A Commutative Law for Dot Products
2.A.B+C)=A.B+A.C Distributive Law
3.mA.B)=(mA).B=A.(mB)=(A.B)m,
where mis a scalar.

4.1.i=j.j=k.k=1; I.j=)j.k=k.i=0
5. IFA=AI+AJ+Ak and B =Bl + B,] + Bk, then

A.B=AB,+AB,+AB,
In particular, we can write:

A.B=AB,+AB, +AB,



6. The square of the magnitude of a vector A is given by the dot
product of A with itself,

A2=|A|2=A.A

As an example of the dot product, suppose that an object
under the action of a constant force undergoes a linear
displacement As, (as shown in Figure 1-4) .By definition, the work
AW done by the force is given by the product of the component of
the force F in the direction of As, multiplied by the magnitude As
of the displacement; that is,

AW=(Fcos0)As

where 0 is the angle between F and As.

But the expression on the right is just the o

dot product of F and As, that s, s
AW=F.As Fig.1-4




1-7: CROSS OR VECTOR PRODUCT:

The cross or vector product of A and B Is a vector
C = Ax B (read A cross B). The magnitude of A x B is defined
as the product of the magnitudes of A and B and the sine of the
angle between them. The direction of the vector C = A x B is
perpendicular to the plane of A and B and such that A, B, and C
form a right-handed system. AxB

In symbols,
AxB=ABsinbu; 0<0 <7

where u Is a unit vector indicating the
direction of Ax B. If A=B orif Ais
parallel to B, thensin®=0and Ax B =0.




4.ixi=)jxj=kxk=0,
The following laws for cross product are shown:

1. AxB=-BxA  (Commutative Law for Cross Products Falils)
2.Ax(B+C)=AxB+AxC Distributive Law

3. mMAxB)=(mA)xB=Ax(mB) =(AxB)m, where m is a scalar.

Also the following consequences of the definition are

Important:

4, ixj=k=-jxi; jxk=i=-kxj;kxi=j=-ixk
This cyclic nature of the cross product can be iOA
emphasized by diagramming the multiplication table k

as shown in Figure



5. |A X B |=the area of a parallelogram with sides A and B.

6. If A x B =0 and neither A nor B is a null vector, then A and B are

parallel.

I ITA=AI+AJ+Akand B=B,l+B,j+BJk, then

0

b o

AXB-= Ax
By

.AyAz
AXB=i Bsz

B,
.AzAx kAxAy
*ipp "M, B,

The cross product expressed in i, j ,k form is:

AxB=i(A,B,—A,B)+jA,B,~A.B,) +k(A,B,~ A, B)



Let us calculate the magnitude of the cross product. We have
|AxBI’ =(A2 + A} + A2)(B} + B +B})-(A,B, +A,B, + A,B,)’
This can be reduced to:
|AxBI® =(A] +A} + A}|(B] +B; +B})—(A,B, +A,B, + AB,)’
from the definition of the dot product, the above equation may be
written in the form:
JAxB[=A’B*~ (A - B)’

Taking the square root of both sides of Equation above we can express
the magnitude of the cross product as

|A X B|=AB(1 ~ cos*8)"* = AB sin @

where 0 Is the angle between A and B.



A physical example of the cross product is the rotational

moment (torque)
T=IrxF

Let a force F act at a point P(X, y, z), as shown in Figure 1-5,
and let the vector OP be designated by r; that is,

OP=r=Iix+)y + kz

The moment N of force, or the torque N,

about a given point O is defined as N=rxF
A
the cross product N=rx F s
Figure 1-5: Illustration of the moment of .:L:KA
a force about a point 0. rsing 2N

——— A > F
P ‘HJ&



Thus, the moment of a force about a point is a having a
magnitude and a direction. If a single force is applied at a point P on
a body that is initially at rest and is free to turn about a fixed point O
as a pivot>», then the body tends to rotate. The axis of this rotation
IS perpendicular to the force F, and it is also perpendicular to the line
OP; therefore, the direction of the torque vector N is along the axis
of rotation. The magnitude of the torque Is given by:

IN|=|r X F|=r Fsin0

In which 0 is the angle between r
and F. Thus, |[N| can be regarded as
the product of the magnitude of the
force and the quantity r sin 6,
which 1s just the perpendicular
distance from the line of action of

the force to the point 0. =xxp \.



file:///C:/Users/KH/OneDrive/Desktop/torque.html

Representation of a given vector as the product of a
scalar and a single unit vector:

Consider the equation:
A=1A +]A +kA,
Multiply and divide on the right by the magnitude of A

A, A, A,
A=Ali—+j—+k
A A A

[

Now A,/A = cosa, Aj/A = cosf3, and cos y = A/A
are the direction cosines of the vector A, and a, o,
B, and vy are the direction angles. Thus, we can ol
write are the direction cosines of vector A, and  «+ 2=
are the direction angles. i




Thus we can write

A =A(I cosa. +j cos B + k cos y) =A(cosa ,cos [3, cos V)
or A= nA

where n Is a unit vector whose components are coso. ,cos 3, and cos
v. Consider any other vector B. Clearly, the projection of B on A is
just

B-A__

B cos 8 =

where 0 is the angle between A and B.

Example 1:

Two vectors A=2i+3j—-k  and B=-i+]+2k
1- Find the angle between the vectors
2- Find the vector product of the vectors



Solution:
I AB=AB + AB +AB =2x(-1)+3x1+(-1)x2= -1

A= ‘/X‘ = 2 +3" +(-1) = 374 units B= [B| = J(-1)? +1*+ 2% = 2.45 units
i izj.j=k.k=1
] _ i j=j.k=k.i=0
A.B=ABcosd® = @O=cos'(—)
AB

and since

6= cos™ ( L ) = cos™ (-0.109) = 96.3°
3.74x2.45

-

~>

—1=i(6+1)-j(4-1)+k(2+3)=71-3]+5k

|

X

(9ol

Il

N =—»
— W ey




Example 2:

Aforce F =1+ J was applied on a body at a point p, such that
op, =1, =2f1+ J and a second force If2 = ]— k was applied at a point
0p =t= f+j+|€ . Find: (a) the total moment N

2 2 !
(b) the magnitude of N (c) the direction cosines of N

—

(a) N1:F1XF1 and szrzx 2

>

f |
N,=1 1 1|=-2i+]j+k
1 -1

o O x
Il
>

O B -

J
N,=|2 1
1 1

-

The total moment is N=N,+N,=k + (2i+] +k)= -2i + j +2k

(b) N=v4+1+4 =3



C

(c) _ .

CSgg=—=— ,C08 f=—=
N 3 N

YA

% and cos 7:%22
1-9:Triple Products:
The expression
A. (B x C)
Is called the scalar triple product of A, B, and C. It iIs a scalar

because It Is the dot product of two vectors. Referring to the
determinant expressions for the cross product, we see that the

scalar triple product may be written:

Z

o

oo
N

A, A
B, B
C, C

A
A.(BxC) =|B
C

Z

o



Because the exchange of the terms of two rows or of two columns
of a determinant changes its sign but not its absolute value, we can

derive the following useful equation:

1- (A.B)C#A(B . C) in general
2- A. (B xC)=B. (CxA) =C. (Ax B) = volume of a
parallelepiped having A, B, and C as edges, or the negative of this

volume according as A, B, and C do or do not form a right handed
system. Thus, the dot and the cross may be interchanged in the

scalar triple product.



The expression
Ax (B x C)

Is called the vector triple product.

The following equation holds for the vector triple product:

1- Ax (B x C) # (Ax B) x C (Associative Law for Cross Products
Falils)

2- Ax(BxC)=(A.C)B-(A.B)C
(AxB)xC=(A.C)B-(B.C)A

Vector triple products are particularly useful in the study of
rotating coordinate systems and rotations of rigid bodies.



Example 3:

Given the three vectors A=1, B =1—jJ, and C =k, find

1- A. (B x C)
2- Ax (B x C)
Solution:
1 0 0
1- A-(BxC)=|1 -1 0|=1(-1+0)=-1
0 0 1

2- AX(BXxC)=B(A.C)- CA-B)=(i-j)0—k(1-0)=-k



1-10: Change of Coordinate System:

The Transformation Matrix:

Analytical mechanics
Dr. Ali A. Mohammed Saleh




1-10:Change of Coordinate System:
(The Transformation Matrix)

The rotation of a Cartesian
coordinate system is an example of an
orthogonal transformation. Consider the
vector A expressed relative to the triad 1jk:

A=iA,+jA,+kA,
Relative to a new triad 1')'’k" having

a different orientation from that of 1 j Kk,
the same vector A Is expressed as:

Translate along X

A=i'A . +JA, +K'A,

-l

,
|
I ~
|
<(N > xvl |
I "y !
N s X I
1< () i
P |
5 : |
A=A7 | |
” yl | -
> | 7
| /
|
1
|7
e o B e S s S S S S
a‘k\.‘ i
E
_________ -
s
i
.
Fg=====4q A
| ]
[ |
1
: 3
[ ]
[ e
[ 1. J
..... -

Rotation 90° around Y




Now the dot product A. I' Is just A, that is, the projection of
A on the unit vector 1I'. Thus, we may write

Ay =Adi =(i1)A, +(j+1)A + (k-1)A,
Ay =Af=GA, +( A, +k- A,
A, =AK =1 K)A, +(j-K)A, + (k- KA,

The scalar products (i . 1'), (1 . }'), and so on are called the
coefficients of transformation. They are equal to the direction
cosines of the axes of the primed coordinate system relative to the
unprimed system. The unprimed components are similarly expressed

as:
A =Avi=( DA, +(j DA, +(K DA,
Ay=A-j=( A+ DA, +K A,
A, =A k=304, +( WA, +K kA,



The equations of transformation are conveniently expressed in matrix
notation. Thus,

The 3-by-3 matrix In Equation (4 .Y (i.i joir kein)(4,)
above Is called the transformation | A

ij §f kgl

matrix. Ary) 'k j-K kK j(A;)
Example 4:
Express the vector A = 3i + 2] + k In terms
of the triad I')'K", where the X'y'—axes are “

rotated 45° around the z-axis, with the z- and
Z'-axes coinciding, as shown in Figure.
Referring to the figure, we have for the

coefficients of transformation i . i* = cos 45° a .
and so on,

45°




we have from the figure:
i-i’ =142 j =142 k-i'=

cos(f) sin(f) O

| —sin(0) cos(f) O

0 0 1
(AN (T K (AD
AT k||
(A LTk Tk kk LA,

I
2
I
2

Rl
ots|m i

o%“

e
s

s

o

— O




We substitute the components of the vector A =3i + 2j + k

{

11 2Ly
*’A:] VIoN2 AR
Al l=| ——= —= 0|4, ‘ A|l=| -——= —= 0]|2
V2 W2 ] , V2 2
|4 o o0 1|l4 A o o 1|\
These give:

PRI T I

so that, in the primed system, the vector A is given by

g 5 oo 1 A ~
A= —I1 ——=] +K
2 R



Example 5:
Find the transformation matrix for a rotation of the primed
coordinate system through an angle ¢ about the z-axis. We have

i.i'=j.j =cos¢
j-i'=—i.j=sing
k-k=1

and all other dot products are zero; hence,
the transformation matrix is:

(A (i jr kT ) (A cos¢ sing O
A = -7 77 k-] A, ‘ —sing cos¢ O
LA \f.k' ]k k~k'/\Az) 0 0 1,




The transformation matrix for a rotation about a different coordinate
axis-say, the y-axis through an angle (0) given by the matrix
L{ “'

cos@ 0 —sinf
0 1 0

sin@ 0 cos@

Consequently, the matrix for the combination of two - .
rotations, the first being about the z-axis (angle ¢) and

the second being about the new y' -axis (angle (8), Is
given by the matrix product

cos@ 0 —sin@)\( cos¢ sin¢g O cos@ cos¢ cos@sing —sinf
0 1 0 —sin¢ cos¢ O|=| =—sin¢ cos ¢ 0
sin@ 0 cos@ 0 0 1
y-axis Z-axIs
Now matrix multiplication 1s, In general, noncommutative;
therefore, we might expect that the result would be different if the
order of the rotations, and, therefore, the order of the matrix

multiplication, were reversed.

sin@cos® sinBsing cosé



Example6:

Express the vector i+] interms of the triad i i k¥ where the X'
Z' axes are rotated 60 degree around the y axis, and the y' axes

coinciding.

Solution: From the figure . we can see that

f-flzé-kﬂ':comoﬂ —%

N J3 .

-k =sin60° = X~ 2 Y c0s90 = 0
- 2 A

k-i :f:t:rs(‘;)(}+60):—'511’160:—7
The rest are zero

z

k

Yy

W

i

il

60

60 O
k
z

Therefore the transformation matrix and the equation

transformation becomes:

(AN (T ] K (A
A=l BT KT || A -b{
(A TR Tk kKA




X
-y
z

“ 3D(x,y,z)

cos(d) 0 —sin(6)
0 1 0 Xz
sin(6) 0 cos(0)

1 0 0
J| 0 cos(f)  sin(6)
0 —sin(f) cos(0)

cos(0)  sin(0)

yX
X [Rotating aroundz .| - sin(s) cos(6) O
z 1

0 0




Some important trigonometric functions in transform operations

T . T _
O —_ 4+ X = — SinXx tan]§+x = —cot x T
2 \ sin—+ x| = cos x
T
T . tan]——x = cot x g 1
cod — — x| = sin x 2 5111x+x):—51nx
tan[r{ + X) = tanx 511{;[ _ X) - sin x
CDS[TEiX) = — CO0OSs X ; . \ .
tan[n—x) = — tan x I
3 . ) \ sit —J_rx‘ = —COS X
cosd — 4+ x| = sin x I .
2 ] tan — + x| = —cot x
37 B . - 2 . 2
coq - —X| = —sinX gy E x| - cotx | lCOS X +sin"x =1

] ] v ] .
cos(20t)=2cos e -1 |cos(2et)=cos e —sm | {cos(2et)=1-2sm" a

sin(ct + P )= sino cosP +cosasinf| |sin(o — B )= sine cosp —cosasin p

cos(a — P )= coscicos p +sinasinf| |cos(a + B )= cosa cosp —sinasinp
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Analytical mechanics
Dr. Ali A. Mohammed Saleh




1.1: Given the two vectors A=1 +j and B =] + Kk, find the following:
(a) A+Band |A + B| (b)3A-2B (c) A.B (d) AxB and |AxB|

@ A+B=G+sGri=is2jri

!

A+Bl=0+4+1)? =J6

(b) 34-2B=3(i+j)-2(j+k)=3i+ -2k

(c) A-B=1)0)+(1)1)+(0)1)=1

=i(1-0)+ j(O-1)+k(1=0)=i— j+k

|f]x1§|=(1+1+1)-%=\/§




1.2 Given the three vectors A = 2i +J, B =1 + Kk, and C = 4j, find the
following: (a) A.(B+C)and (A+B).C

(b) A.(BxC) and (AxB).C (c) Ax(BxC) and (AxB)xC
Soluton:

(4+B)-C- (3’+J+")4J (N0 +(1) &) +(1)(0) =4




1.3: Find the angle between the vectors
A =al+2a] and B =al+ 23] + 3ak.

Sottrs

| Da2

o’ \5\14

1.4 Prove that the projection of A on B Is equal to A .b, where b is a
unit vector in the direction of B.

St




1.5: Find the volume of a parallelepiped with sides
A=3i—-j, B=j+bk and C =i+5j+4k

3 -1 0

Solution: _
volume of parallelepiped =|A-(Bx C)|=[|0 1 2|] = | — 20| = 20.
1 4

5

1.6:A=1+j, B=2i-3j+k and C=4j-3k, find
(@) (AxB)xC (b)Ax (BxC)

Solution:
(AxB)xC=(A.C)B-(B.C) A
= (4)(2i -3j +k ) —(-15) (i +})
= 81-12j +4k +15i +15j
= 231 +3j + 4k

j k
(@) AxB= | O|=i=j=5k Then AxB)xC= = 23i + 3j+4k.
l

i
l
2 -3




i j ok i ok
1

() BxC=|2 =3 =5i4+6j+8k Then Ax(BxC)=|l | 0|=8i-8j+k
0 4 -3 568

It can be proved that, in general, (A x B) x C# A x (B x €).






1.7: Find a unit vector normal to the plane containing the two vectors
A=2i+j— k and B =1-] +2k

Sottion:

the vector AxB

Al vEs = Its magnitude |AxB|




Sotton:

o 4 A A A
Given a =2i+Aj+k

-—)
and b = i-2j+3k

-*—)

Since the vectors are perpendicular, a. b =0

N (2i+Aj+k)(i=2j+3k) =0

2(D+A(=2)+1(3) =0

2-2A+3 =0
5-2\ =0 =22\=5

5

7&.-—-5




A A

a-b =(i+3j+7k)-(2i+6)+3k)

C=1(2)+ 3(6) +7(3)

+18+2] =

—

16] = V22 +62+3% = Ja+36+9

—» B
Now, projection of aon b =




1-10: Derivative and Integration of a Vector
1-11: Position Vector of a Particle
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1-10: Derivative and Integration of a \Vector







1.11: Position Vector of a Particle: Velocity and
Acceleration in Rectangular Coordinates







Tangent line
atP




Thus, acceleration is a vector quantity whose components, In
rectangular coordinates, are the second derivatives of the positional
coordinates of a moving particle.




Example7: Examine the motion represented by the equation:

2
r(t) =ibt +j[ct —%)+ kO




_dr ., .
=== ibw coswt - jbw sinwt

lo =v|=(b*&’ cos® ot +b e’ sin® wt)>=bw



. a=(bwcos wt)(-ba&’ sin ot) + (-bwsin wt)(—ba’ cos wt) =0

v-a=-o’b’sinwtcoswit+ @’b’sinwfcosat=0

a=—iw’bsinat- jw*bcoswt

F=1bsinwt + jbcoswt

a=—a)2r







1-12:Relative velocity:

Consider two  particles  whose
position vectors are r. and r. respectively.
The displacement of the second particle
with respect to the first is the difference
r,— r;which we shall call r;,.The velocity
of the second particle relative to the first
which we shall call the relative velocity is :

Vie = T&& T T at 2~ "N

By transposing v: , for the actual
velocity of particle 2 in term of the
particle 1 and the relative velocity
of the two particles we have:

Vo=V1— Vo




’ Example 9: ‘
A wheel of radius b rolls along the ground with a forward speed
Vo, find the velocity of any point P-on the rim relative to the ground

'Solution:‘

The motion of the point P is circular and suppose that the
motion 1s clockwise about the origin center of wheel, in this case.
Then, we first consider the position vector Is given be expression:

rop=ib cos @ - jb s8in €
where 0 = ot

The time derivative gives
the velocity of P relative to the
center of the wheel as:

Vil = —1bw sin § — jbw cos I




Since the angular velocity w = v, /b, and since the velocity
of the center of the wheel relative to the ground is iv,,then the
true velocity of P relative to the ground is

Vv = ivy — 1ibw sin § — jbw cos @
= ivo(1 — sin 8) — jvg cos 8

In particular, for we find that
vV = 12v,, which Is just twice the
velocity of the center C. At these
points the particle Is at the uppermost
part of its path.

Furthermore we obtain v = 0. At
these points the particle is at its
lowest point and Is instantaneously
In contact with the ground.




Example 10:

The following relations represent the position of two particles move in
the same circular path:

r; = ibsinwt + j becosot and 1= i bcoswt — j bsinwt

Find 1- relative velocity 2- magnitude of the relative velocity,
3- the time rate of the change of the displacement between the
two particles, all as a function of time.

} Solution: ey . :
_ V= 1 bocosmt —j bwsinwt

since Vi12=V,— V4  Then '
Vo= -1 bwsinot —j bocosot

Therefor the relative velocity is:

1- V12 = -i bo(sinwt + cosot )- j bo( cosot - sinwot)

r o - 2 2 . 2 . .
2. |[V12/=bo (sin"ot + cos et + 2sinet cosot + cos’ot+ sinot - 2sinet cosot)'”

=bw(2) "* this is the magnitude of the relative velocity




3- The time rate of the change of the displacement between the two
particles is:

a7z 7]

and since

r; = ibsinwt + j bcosot and r,=i beoswt — j bsinwt

Then r;-r;=ib (coswt - sinmt)- j b (sinmt + cosmt)

. 9 . 2 - "
T, — 11| = b (cos ot+ sin“t - 2sinot cosot + sin‘ot + cos’ot + 2sinmt coswmt) 2

= b(2)""

Then e
w2 =1l =0

Note the time rate of the change of the displacement between the two
particles Is not the same as the magnitude of the relative velocity.



1-13:Ttangential and Normal Components of Acceleration: ‘

Any vector can be expressed as the product of its magnitude
and a unit vector giving its direction. The velocity vector v can be
written as the product of the particle's speed v and a unit vector <
that give the direction of the particle's motion, thus:

V= V1
The vector 7 iIs called the unit tangent vector. As the particle
moves the speed v may change and the direction of T may change. By
using the differentiation of product of scalar and vector to obtain
acceleration vector the result Is:
dv  d(vrt) dt .

a4 T Va

ad

The unit vector being of constant magnitude, has a derivative
% express the change in direction of t with respect to time



The particle move a distance As along
the path from the initial point P to another point
P at time interval At. let denote the unit tangent

vector at P and P by t and £ , respectively as
shown In figure.

The directions of these two unit vectors
differ by angle Ay as shown in the figure, for
small value of Ay, the difference At approaches
Ay in magnitude (At — Ay ) and the direction of
At become perpendicular to the direction of =
(At L t) when Ay and As approach to zero.

The derivative j—; IS of magnitude unity

(d’c

dy

] . dt
= 1)and IS perpendicular to t (ﬂ 1 r)




So That we call it the unit normal vector and denote it by n

= _ g
dy

To find the time derivative unit vector % ~we use the chain rule

as follows: dr _drdy  dyds

dt _dpdt " dsdt

v
= n —-—
Jo

In which p = 5_;, Is the radius of curvature

of the path of moving particle at P. Substitute the
value of % Into equation:

_dv_d(vt)_ . -
| =0 Tar TV ar
To find
12

a=vt+ —n
I




Thus we can note that the acceleration of a moving particle has
two components:

L ] vz
A=vT+ —n
p

1- Tangential component (in the direction of motion) ar = v = §

2- Normal component, also called centripetal acceleration (directed
toward the center of curvature on the concave side of the path

- 1]2
motion) ay = )

The magnitude of the total acceleration is given by:

la] = jfﬁ" - (,;«-'4- ’ff)m

i | p?




. v? v‘
a=vr+ —n lal-h— ={i+ ~—
p (|
If the particle moves on a circle with

constant speed Then the acceleration vector
2

IS of magnltude — , Where R, Is the radius

p?

of the circle. The acceleration vector Is
always points to the center in this case as
shown in figure.

However If the speed is not constant
but iIncrease at a certain rate v then the
acceleration has a forward component and is
slanted away from the center of circle towards
the direction as shown in figure. What happen
If the speed decrease at a certain rate v ?







1-14: Velocity and acceleration in plane polar coordinate

It 1s often convenient to employ polar coordinates r, 6 to
express the position of a particle moving in a plane. The position
vector of the particle can be written as the product of the radial
distance r by a unit radial vector e,.:

r=re,

The coordinates of a point P are
described by the radial distance from the
origin “r” and the angle with respect to
the X- axis.

X =TrC0Ss0

y=rsino
Along r the unit vector is é,- and along 0 ,
the unit vector Is ég




As the particle moves, both r and é,. vary; thus, they are both
functions of the time. Hence, if we differentiate with respect to t, we
have
_dr de

re, +r—=L

Tdt T dt

A\

To calculate the derivative d é, /dt, let us consider the vector
diagram shown in figure:

Y




When the direction of r changes by an amount the A©O
corresponding change Aé,. of the unit radial vector is as follows:

The magnitude |Aé,.| is approximately equal to AO (|Aé,.| = A)
and the direction of is very nearly perpendicular to é, (Aé, L é,). Let
us introduce another unit vector, ég, whose direction is perpendicular
to é,.. Then we have

Ae, = ey Af

If we divide by At and take the limit, we get:

AG.

= A6 andyiAclilNcs
de do

L —@n e mmmmmee- 2 And since
dt % dt e ) 4
e, L e = Ae ="AleH




For the time derivative of the unit radial vector. In similar
way, we can argue that the change in the unit vector ég Is given by

the approximation:

Ae, = eyAl

Here the minus sign Is inserted to
Indicate that the direction of the change is
opposite to the direction of é,., as shown iIn
the figure. Consequently, the time derivative

IS given by



We can finally write the equation for the velocity by
substituting equation (2) for the derivative of the unit radial vector in
equation (1) to find:

v=re, +rfe, - 4

Where, 1 1s the radial component of the velocity vector, and
r@ Is the transverse component.

To find the acceleration vector, we take the derivative of the
velocity with respect to time for equation (4). This gives

a=L —ie ++ 2 (16 +rie, +rf d;:

dt r dt




Substituting the value of %’" and dd—é:’ In the equation of
acceleration we obtain:

a=iée +rbeé,+(F0+r0)e,—ro’e,

1

i=@G-r0*)e. +(2r0+rf)e, - 5

Thus, the radial component of the acceleration vector is:

=)

a =r—r@-

7

and the transverse component is
Q9:2ﬁ9+ré
_1d

2.
_19 25
L)



We study here two special cases

For a particle moves on a circle of constant radius b, so that
7 = 0, then the radial component of the acceleration is of magnitude
b6? and is directed toward the center of the circular path. The
transverse component in this case is b6 .

While if the particle moves along a fixed radial line, that is if O Is
constant then the radial component is #* and the transverse
component Is zero.

If r and both vary, then the general expression (6) gives the
acceleration.

a=@G—-r0’)e. +(2r0+rb)e,



Example 11:
A particle moves in a spiral path in such away that the radial

distance decreases at a constant rate, r=b —ct , while the angular
speed increases at a constant rate, 8 = kt. Find the speed as a
function of time.

Solution:

we have r = —c and ¥ = 0.
and the velocity is VvV =re¢ +rfe,

= V=-ce +(b-ct)kte,

the speed v = \/cz +(b—ct) k*t*

Which is valid for t < b/c. Note that v = ¢ for both t=0, r=b
and for t=b/c, r=0.



Example 12:

On a horizontal turntable that Is rotating at constant angular
speed a bug is crawling outward on a radial line such that its distance
from the center increases quadratically with time 7 = bt? , 9=t
where b and o are constants. Find the acceleration of the bug.

Solution:
we have 7 =2bt, ¥ =2b.0=0,0=0.

a=(#-r8%e, +(rf +2r)e,
a=2b-bt’w’)e, +(0+2(2b1)w)é,
=bh(2-t’w’)e, +(4bwt)e,
Note that the radial component of the acceleration becomes

negative for large t in this example , although the radius is always
Increasing monotonically with time.






The equation of motion is :

P’(t) = %

The linear momentum (and velocity) can be obtained as a function of
time by integrating the equation of motion to get is :

FF(®) dt = mo(t) + C

Where C is the constant of integration. The integral [ f(t)dt is
called impulse. The position of the particle as a function of time can
be found by a second integration as follow:

- fana- ][50




A block is initially at rest on a smooth horizontal surface. At time t=0
a constantly increasing horizontal force is applied F= ct. Find the
displacement as a function of time




Forces like viscous resistance exerted on a body moving
through a fluid or like Air resistance on falling (or rising) body are
called viscous forces. If the force can be expressed as a function of v
only, the differential equation of motion F = mx may be written in

the form:
Flv) =m< - 1
F(v)=m%£=mv% R— |

from eq. (1) we found:

=) =f52 - 3-
from eq. (2) we found:

X = X(¥) =f":_:)" -

S




Solving eqg. (3) gives v as a function of time, v =v(t) and we can solve

it for x as given:
-
!

Solving eq. (4) gives v as a function of position we get:




Suppose a block Is projected with initial velocity v, on a smooth
horizontal surface and that there is air resistance such that F(v) = -cv
the linear case dominates. Calculate v and x as a function of time

The differential equation of motion is:

dv
F(v)= -cv=m—
(v)=—c m-—

Which gives upon integrating,

i—mdv m v
cv c v

We can easily solve for (v) as a function of (t) multiplying by — ¢/m

and this give :
_c =1n[l]
m Vn




Taking the exponential of both side. The result is:

V=V =¢°
(1

Thus the velocity decreases exponentially with time. A second
Integration gives the position (X):

Showing that the block approaches a limiting position (i.e. the block
never goes beyond the limiting position) given by:

myv

X =
Iy c







The viscous force that a fluid exerts on a particle depends on
velocity, F = F(v). In the case of viscous resistance exerted on a body
moving through a fluid. If the force can be expressed as a function of
v only, the differential equation of motion may be written in either of
the two forms:

dv

F, + F(v) =mv—

o+ F(v)=m T
E, 1s any constant force that does not depend on v. Upon separating
variables, integration yields either t or x as a function of v. A second

Integration can then yield a functional relationship between x and t.




For an object falling vertically in a resisting fluid, the force E,
In equations above Is the weight of the object — mg for the x-axis
positive in the upward direction. The resistance force iIs proportional
to the first power of v. we can express the force as — cv regardless of
the sign of v because the resistance is always opposite to the direction
of motion. Then the differential equation of motion is given by:
—Tng — €U = M % cevmecmcaaa | F(v)
The constant of proportionality ¢ depends on the
size and shape of the object and the viscosity of the fluid. m
Separating variables and integrating, we find:

,,/ﬂé,f m gy
F(v)  Jo —mg —.cv

g




In which v, is the initial velocity at t = 0. Upon multiplying by — ¢/m
and taking the exponential, we can solve for v: bmg + ¢ vo)e= =t = (mg +c )

v = - —'!lq -+ (m + v) _cih‘ EESE————

After a suff|C|ent time (t >> m/c), the exponential term drops
to a negligible value and the velocity approaches the limiting value
—mg/c. The limiting velocity of a falling body is called the terminal
velocity; it Is that velocity at which the force of resistance is just
equal and opposite to the weight of the body so that the total force is
zero, and so the acceleration is zero.

The magnitude of the terminal velocity is the terminal speed mg/c
which is designate by v; and let us write the characteristic time t
by m/c. Equation 3 can then be written as

/T

v=—0,(l-e¢ ")+ voe_m S—




In particular, for an object dropped from rest at time t =0, v, =0, we
find: -
v=-0,(1-¢"")

Integrating equation 3 with give X as a function of t, then we get:
¢
r— Xp= ‘L I)(t)dt

= — -—-qt + (ng + — % (1 — e-“’m) ——-5

We can write equation 5 in term of the terminal speed v; and
characteristic time 7 :

X =x,— Vit +x(1—e 7

Where:
m2g
C2

mvo

4

X, = =g+ v,r




The ratio between the terminal speed and the characteristic time is:
mg/c

In this case, the magnitude of F(v) Is
proportional to v2. To ensure that the force remains 2
resistive, we must remember that the sign preceding F(v)
the F(V) term depends on whether or not the motion \
of the object is upward or downward. This Is the case
for any resistive force proportional to an even power

of velocity.
A general solution involves treating the upward and downward

motions separately. Here, we things somewhat by considering only the
situation in which the body is either dropped from rest or projected
downward with an initial velocity v, .

mg




Then the equation of motion is :

dv
}—my.:t e =m "'ﬁ

For rising bodies E. is negative (downward)
For falling bodies E. is positive (upward)

The differential equation of motion can be integrated to give t as a

T et

B e e




e

Where terminal speed v, and characteristic time t are equal:
Now we find v as a function of t from equation above ;

e e = B2




In the same way we can find the equation of motion for falling body
and Is given by :

__
1

0 T I

Linear resistance

Quadratic resistance
0.5 -

Now we find v as a function of t ;

Speed (vivy)

Graphs of speed versus time for a falling Time (01
body subject to linear and quadratic air
resistance







The viscous force that a fluid exerts on a particle depends on
velocity, F = F(v). In the case of viscous resistance exerted on a body
moving through a fluid. If the force can be expressed as a function of
v only, the differential equation of motion may be written in either of
the two forms:

F,+F(v)= mv@
dx

F, is any constant force that does not depend on v. Upon separating
variables, integration yields either t or x as a function of v. A second
Integration can then yield a functional relationship between x and t.



For an object falling vertically in a resisting fluid, the force E,
In equations above Is the weight of the object — mg for the x-axis
positive in the upward direction. The resistance force iIs proportional
to the first power of v. we can express the force as — cv regardless of
the sign of v because the resistance is always opposite to the direction
of motion. Then the differential equation of motion is given by:
—Tng — €U = M % cevmecmcaaa | F(v)
The constant of proportionality ¢ depends on the
size and shape of the object and the viscosity of the fluid. m
Separating variables and integrating, we find:

,,/ﬂé,f m gy
F(v)  Jo —mg —.cv

g




In which v, is the initial velocity at t = 0. Upon multiplying by — ¢/m
and taking the exponential, we can solve for v: bmg + ¢ vo)e= =t = (mg +c )

v = - —'!lq -+ (m + v) _cih‘ EESE————

After a suff|C|ent time (t >> m/c), the exponential term drops
to a negligible value and the velocity approaches the limiting value
—mg/c. The limiting velocity of a falling body is called the terminal
velocity; it Is that velocity at which the force of resistance is just
equal and opposite to the weight of the body so that the total force is
zero, and so the acceleration is zero.

The magnitude of the terminal velocity is the terminal speed mg/c
which is designate by v; and let us write the characteristic time t
by m/c. Equation 3 can then be written as

/T

v=—0,(l-e¢ ")+ voe_m S—




In particular, for an object dropped from rest at time t =0, v, =0, we
find: -
v=-0,(1-¢"")

Integrating equation 3 with give X as a function of t, then we get:
¢
r— Xp= ‘L I)(t)dt

= — -—-qt + (ng + — % (1 — e-“’m) ——-5

We can write equation 5 in term of the terminal speed v; and
characteristic time 7 :

X =x,— Vit +x(1—e 7

Where:
m2g
C2

mvo

4

X, = =g+ v,r




The ratio between the terminal speed and the characteristic time is:
mg/c

In this case, the magnitude of F(v) Is
proportional to v2. To ensure that the force remains 2
resistive, we must remember that the sign preceding F(v)
the F(V) term depends on whether or not the motion \
of the object is upward or downward. This Is the case
for any resistive force proportional to an even power

of velocity.
A general solution involves treating the upward and downward

motions separately. Here, we things somewhat by considering only the
situation in which the body is either dropped from rest or projected
downward with an initial velocity v, .

mg




Then the equation of motion is :

dv
}—my.:t e =m "'ﬁ

For rising bodies E. is negative (downward)
For falling bodies E. is positive (upward)

The differential equation of motion can be integrated to give t as a

T et

e B e Fa




e = fe S

Where terminal speed v; and characteristic time t are equal:

Now we find v as a function of t from equation above ;

e e T = B




In the same way we can find the equation of motion for falling body

0 T I

Linear resistance
Quadratic resistance

Now we find v as a function of t ;

Speed (vivy)
=}
La
1
|

Graphs of speed versus time for a falling Time (01
body subject to linear and quadratic air
resistance







2-4:Linear Restoring Force: Harmonic Motion

One of the most important cases of rectilinear motion Is
that produced by linear restoring force. This Is a force whose
magnitude, is proportional to the displacement of a particle
from some equilibrium position and whose direction Is always
opposite to that of the displacement. Such force is exerted by an
elastic cord or by spring obeying Hooke’s law.

P= k(X —a) = —kz N—

Where X is the total length and a is the unstretched (zero load)
length of the spring. The variable x= (X-a) is the displacement of

the spring from it is equilibrium. The proportionality constant k
Is called stiffness




Equilibrium

Let a particle of mass m be L~ position
attached to the spring as shown in figure. 4= x
The force acting on particle is given by _____.._:I
equation (1). e LA

SNANNRANNNNNNS

F— kx a: horizontal motion

Let the same spring be hold vertically as shown in figure.
The total force now on particle is;

F=—-kKX-a)+mg  -— —2

Where the positive Is downward. Let| eaibam o+ 52

measure X relative to new equilibrium \[
position, that is the: T

x=X—a-mg/k |
I 1 5
This given again: -

b: vertical motion




So the differential equation of motion Is again:

mé 4 kz = 0 e 3

Equation (3) Is linear differential equation of motion with
constant coefficient. We try 4 e4t |, where q is a constant can be
determined.

If x = A e9 a solution for all values of time. Apply this solution
to eg. 3 we have:

m g;, (Aev) + k(Aew) =0 emmmmeeee 4
Which reduces to the equation:
mg* + k =0
That Is: i= V=1

q=dz£\[£=:i:£wo

&
)
3=




If £; and f, are solution then the sum of f; + f, Is a solution too.
The general con of equation (3) is then:

x = Aje | A_giut s

Since e = cosu + i sinu the alternate forms of the solution are:

T =asnwd + bcoswyf = -— 6
r = A cos {wt + 6) 7

The constant A of integration in the above equations are
determined From the initial conditions. Equations. 5,6and 7 are
solution of eq.(3). The Motion of sinusoidal oscillation of the
displacement x, so that the eq.(3) iIs the differential equation of
the harmonic oscillator. The coefficient w, Is called angular
frequency (w, = 2mf, where f, Is the linear frequency). The
maximum value of c is called the amplitude of the oscillation,
that Is a constant in equation (7).




The period T, of the oscillation is the time required for complete

cycle:
2 m
To - _t - 2" J /\ . /\}Mm,,/..\.
T 21\[ ik
Example: = '

A light spring Is found to stretch an amount b when it supports A
block of mass m. if the block is pulled downward a distance |
From its equilibrium position and released at time t = 0, find the
resulting motion as a function of time

LSqution:

First to found the spring stiffness, we note that in the
static equilibrium condition

Fe—kb= —mg Imms) . _ ™




Hence, the angular frequency of oscillation is:

In order to find constants for the equation of motion

We have att = 0:

But

Thus

So

z = A cos (wof + 6o)-

z =] and =0

= --Aw. sin (wof + 0.)

A=1

s

) =

k
m
X -kx
P L

} mg
Hooke's Law:




Consider a particle under the action of a linear restoring
force F, = —kx . Let us calculate the work done by an external
force in moving the particle from the equilibrium position (x=0)
to some position x. Assume that we move the particle very
slowly so that it does not gain any kinetic energy; that is, the
applied external force is barely greater in magnitude than the
restoring force —kx ; hence, F,,; = —F,.= kx So:

Welhodee[hedeoke e
In the case of a spring obeying Hooke's law, the work is stored
In the spring as potential energy: W = V(x), where

V(z)= 3 ke* ~rmrmeeeee- 2




Thus, E,= — dV/dx = — kx, as required by the definition
of V. The total when the particle I1s undergoing harmonic
motion, Is given by the sum of the Kinetic and potential energies,
namely
L
2

mi® + 3 kx® —

The Kinetic energy Is quadratic in the velocity variable,
and the potential energy Is quadratic in the displacement
variable. The total energy Is constant if there are no other forces
except the restoring force acting on the particle.

The motion of the particle can be found by starting with
the energy equation (3). Solving for the velocity gives:

9 \1/2
:i:=i[2E k= ] ——r— 4

m m




which can be integrated to give t as a function of x as follows:

t= j e
+{(2E/Mm ) — (kim) x*}'*

In which C 1Is a constant of
Integration and A is the amplitude given by

oEY* 6
A={—
AF

We see from the energy equation (eq.3) that the maximum value
of the speed, which is call Vmax occur at X = 0. we can write:

E=lmod, =1kA?  —7

As the particle oscillates, the kinetic and potential
energies continually change. The constant total energy is entirely
In the form of kinetic energy at the center, where x = 0 and

X = + vy, and it is all potential energy at extrema where x = 0
and x= + A.

=F(m/k)"* cos'(/A)+C .. 5




1-10: Derivative and Integration of a Vector:

Consider a vector A, whose components are functions of a single variable u.
The vector may represent position, velocity, and so on. The parameter u is
usually the time ¢, but it can be any quantity that determines the components of
A. Let:

A@)=7 A,)+] A () +k A, w)

Then

Derivative of a Vector is a vector whose components are ordinary derivatives.

The derivative of the sum of two vectors is equal to the sum of the derivatives,
namely,

4 g+ L+ LE
du du  du
The rules for differentiating vector products obey similar rules of vector calculus.

If »is a scalar function of u then,

I Sy L

du du du

_d_(A.B')z i’li.§+j._‘_i_
du dau

Notice that it is necessary to preserve = the order of the terms in the derivative

of the cross product.

The integration of a vector A as a function of any variable say time (1) can be
written as:

[Aar =fIAx(t)dt+}jAy(t)dt+l€jAz(t)dt

i

19




1-11: Position Vector of a Particle: Velocity and Acceleration in

Rectangular Coordinates
The position of a particle can be spec1ﬁed by a .
single vector, namely, the displacement - S of the
particle relative to the origin of the coordinate system.
This vector is called the position vector of the particle. 7
In rectangular coordinates (as shown in the Figure), the / y
position vector is simply: / m

F:fx+jy+£z
The components of the position vector of a moving particle are functions of the
time, i.e.
x=x(t), y=y() ,z=2z(t)

The derivative of r with respect to ¢ is called the velocity, which we shall denote
by v:

Y sy ip+kz
dt

=<l

where the dots indicate”' ** differentiation with respect to 7.

Let us examine the geometric significance of the velocity vector. Suppose a
particle is at a certain position at time t. At a time At later, the particle will have
moved from the position r(t) to the position r(t + At). The vector dlsplacement
during the lime interval At is:

Ar =r1(t + At) - 1(t)

so the quotlent fd=> Ar/At is a vector that is parallel to the displacement. As
we consider smaller and smaller time intervals, the
quotient Ar/At approaches a limit dr/dt, which we call
the velocity. The vector dr/dt expresses both the
direction of motion and the rate. This is shown
graphically in figure. In the time interval At, the
particle moves along the path from P to P. As At
approaches zero, the point P' approaches P, and the

20



Co g
direction of the vector Ar/At approaches the direction of the tangent to the path at

1 Ilways tangent to the path of motion.. -
P. The velocity vector | is alway 5 nt e E:,-ﬂ,\mf- otion. ATCMEEINY

The magnitude of the velocity is called the speed. In rectangular components the
speed is :

= (2 + 37 422

The time derivative of the velocity is called the acceleration. Denoting the
acceleration with a, we have

In rectangular components,

SIS gy ‘“V"‘”‘-—ba—szr]yﬁ—kz

Thus, acceleration is a vector quantity whose components, in rectangular
coordinates, are the second derivatives of the positional coordinates of a moving
particle.

Example7: Let us examine”™ the prOJectﬂe motion represented by the
equation:

(P ’ .f:";;_.'u‘-:"' —" - ~ A tz
y R r(t)= zbt+](ct—g7j

This represents motion in the xy plane, because the z component is constant and
equal to zero. The velocity v is obtained by differentiating with respect to ¢, hence,

17—§i—fb+j'(c—gt)
. . . - B - -8
The acceleration is given dt . by v: (o7~ 541 )
a:__z_gj“- R
dt -

Thus, a is in the negative y direction and has the constant
magnitude g. The path of motion is a parabola™ %",

21




Example 8: (Circular Motion)

Suppose the position vector of a particle is given by:

F= fbsina)r+jbc_osa)t 4 e C

The distance from the origin remains constant: L e

I
r =|F|=(” sin® wr+ b* cos? ) = b

4(”;"

So the path is a circle of radius b centered at the origin. Differentiating r, we find

the velocity vector : !
. dr Ao
v:?l;:ia)bcosa)t—Ja)bsmwt | &

The particle traverses” ™ its path with constant speed:

1
v =|v|=(w’bh’ cos® wt+ »’h* sin’ a)r)é =bw

The acceleration is:
av

a= = —i w*bsinwt— jw’bcoswr
{
In this case the acceleration is perpendicular to the velocity #La |, because the
dot product of v and a vanishes: L
: e Yo f g ke B AL T T O -

Do e

LY Ve
¥

V-a=-wb’sinotcoswt + Fo’b? sin wt coswrt = 0

Comparing the two expressions for a and r, we find

Lo ow St
z : P P et
d=-—iw’bsinwt- jo’bcoswr SN e
r=1ibsinwt + jbcoswt b PP
N E R A~Z . 7 e
{--{a'\{_*’;q a=—ar r
£ _

The path is a circle with radius b

22




1-12: Relative velocity:

,

LY

mled =
Jet

~ Consider two particles whose position fare 1, and 1,
respectively. The displacement of the second particle with
respect to the first is the difference to-t;which we shall call rp,.

i

o

The velocity of the second particle relative to the first which we

shall call the relative velocity is: . / V
d y d - - i bt \:
Viz = ;;2 = (rzdt I‘;) = ¥y — V1 I

By transposing % v1, for the actual velocity of particle 2 in terms of the
velocity of particle 1 and the relative velocity of the two particles we have:

L c VTV TV .

oo ‘.
N T
o 3

Example 9: BRI

L7

A wheel of radius b rolls along the ground with a forward sf)eed find the
velocity of any point P on the tim relative to the ground v Loaepoa ﬁ/ (¢

A e e el s
Solution: The motlon of point P is circular and suppose that
the motion is clockwise about the origin center of wheel, in -
this case. Then, we First consider the position vector is

given by expression:

Tor = ibcogs§ — jbsin @

where® =t - =T
NI d.e IR

the time derivative™ gives the velocity of P relative to the center of the wheel

T ar. ey '1,; ,;f A . = e : o
LA e e o Vel = —ibw sin 8 — jbw cos 8

Since the angular velocity @ = v,/b, and since the velocity of the center of the
wheel relative to the ground is iv,, then the true velocity of P relative to the ground

s wees oo Vo= iy — dbw SIn 8 — jbw cos @

B ddie © = ipg(l — sin 8) — jvecos 8
23




Example 10: The following relations represent the position of two particles move
in the same circular path.

r; =ibsinot + j bcoswt and r,= i beosot - j bsinwt

Find the relative velocity, the magnitude of the relative velocity, and the time rate
of the change of the displacement between the two particles, all as a function of
time?

solution:
since Va1 V-V
v1¥ i bocosot —j bosinwt
Vo= -1 bwsinmt —j bwcosot
therefore the relative velocity is
Vpq = -1 bo(sinwt + coswt )- j ba( coswt - sinot)
V211 = bo (sin“ot + coszq)t + 2sinot cosot+ cos“ot+ sin‘wt - 2sinot coswt)"”?
= bw(2) ' this is the magnitude of the relative velocity
The time rate of the change of the displacement between the two particles is :
47 - 7]
and since
r-r=1b (coswt - sinwt)- j b (sinot + cosot)
r; — 11| = b (cos’ot+ sin®wt - 2sinot cosmt + sinZot + cos’ot + 2sinwmt cosat) '
— b(2)2
then 27 -7 =0

Note: That the time rate of the change of the displacement between the two
. particles is not the same as the magnitude of the relative velocity.

24




1-13: Tangential and normal componenet of acceleration:

Any vector can be expressed as the product of its magnitude and a unit vector
giving its direction. the velocity vector v can be written as the product of the
particle's speed v and a unit vector t that give the direction of particle's motion,
thus

Y= vT

- -

ey ‘u % s ~‘“ ;,. }_}1
the vector t is called the unlt tangent vector. As the particle moves the speed v

may change and the direction of © may change. By using the differentiation of
product of scalar and vector to obtain acceleration vector the result is:

s

J')-‘?’ (G "‘-J—*-Lsu
_dav_dlt | N dt ‘1
a=— == vTtv ( ) L

N :f a‘\,c l'.,f"-'d

b

w7

. . . . . dr
The unit vector T being of constant magnitude, has a derivative 2 eXpress the

change in direction of T with respect to time.

The particle moves a distance As along the path from
the initial point P to another point P' at time interval At. Let
denote the unit tangent vectors at P and P' by 7 and 7,
respectively as shown in the figure.

The directions of these two units vectors differ by angle
Ay as shown in figure, for small value of Ay , the

difference At approaches Aqf in magmtudaj; At = Ay )

and the direction of At become perpendicular to the direction of t

: dr .
(At L 1) when Ay and As — zero. The derivative ﬁ is of

magnitude unity (|d_| = 1) and is perpendicular to t (—J_ T)

PR )4’1’5"

So that we call it the umt norﬁlal vector and denote it by n:

i
=1
©
&
b

&5
L




. . . d .
To find the time derivative d—z , we use the chain rule as follows:

dr_drdy dyr ds v
dt dpdt “dsdt " p

in which p = ;—; is the radius of cur;eture of the path of moving particle at P.

. dt . '
Substitute the value of EE mnto equation (1) to find:

U2

aAa=vT+ —n
Je,

Thus we can note that the acceleration of a moving paricle has two components:

1- Tangential component (in the direction of motion) a, =v = §
A S e
2- Normal component, also called centripetal ‘acceleration (directed toword the
- 2
center of curvature on the concave side of the path motion Ay = %—

The magnitude of the total acceleration is given by:

J di | R

If the particle moves on a circle with constant sgee’;(!i then
the acceleration vector is of magnitude v*/R, , where R, is the
raduis of the circle.The acceleration vector is always points to
the center in this case as shown in figure.

However if the speed is not constant but increase at a
certain rate v then the aeceleratlon has a forward component
and is slanted™"" away  from the center of circle towards
the direction as shown in figure. What happen if the speed
decrease at a certain rate v?




i
c\,yz—-—»"wut_} u\.u)py{

1-14: Velocity and Acceleration i in rPlane Polar Coordinates:
It is often convenient to employ polar coordinates r, 0 to express™" the
position of a particle moving in a plane The position of the particle can be wrltten

as the product of the radfla] distance r by a unit radial vector e;:
UL

= re,

\}_&“ q*\..s "_).J’J'

As the particle moves, both r and e, vary; thus, they are both functions of the time.

Hence, if we differentiate with respect to t, we have

_dr _ de,
dt dt \\

To calculate the derivative de/dt, let us consider the vector diagranfshown in

Figure.

€y

‘,....‘\: \. : pwu“
When the direction of r changes by an amount A6 the corresponding change Aer of
the unit radial vector is as follows:

The magnitude |Ae, | is approximately equal to AO (|Ae, |= AB) and the
direction of Ae, is very nearly perpendicular to e, (Ae, L e ). Let us introduce
another unit vector, eg, whose direction is perpendicular to e;. Then we have

Ae, =~ egAD

If we divide by Af and take the limit as At—0, we get Q

de de

d‘t =€y A = 989 """""" 2

27




For the time derivative of the unit radial vector, we can argue in similar way that
the change in the unit vector ey is given by:

s
Aeg~ e AD S diveekivn o Beg oppsite e

Here the minus sign is inserted to indicate that the direction of the change is
opposite to the direction of e, as shown in Figure. Consequently, the time
derivative is given by '

de, dé

& o ar = — e.,,é -------- 3
By using Equation 2 for the derivative of the unit radial vector, we can finally
write the equation for the Velocny as:

rachel

V= re + rGea ......... 4

o lraviyerie

Thus, 7 is the radial*™ component' ' of the velocity vector, and 78 is the

An hal)
transverse component.

To find the acceleration vector, we take the derivative of the velocity with
respect to time. This gives

a=%-re +r%+(r9+r9)e9+r9d:te -

The values of de,_/dt and dey/dt are given by Equations 2 and 3 and yield the
following equation for the acceleration vector n plane polar coordinates:

s rﬂz- 1 8€s -I-YS{?&‘«—(.’Q’“-- c§el
=(#-r6%)e, +(r+210), - 5
Thus, the radial component of the acceleratlon vector is
a, =1— rg*

and the transverse component is: p

1

ay =10+218 == —(r’)
r dt

The above results show, for instance, that if a particle moves on a circle of
‘constant radlus b, so that 7 = 0, then the radial component of the acceleration is of
rn_agnitude be2 and is directed inward™"' toward the center of the c1rcular path.

a5
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o3
The transverse comgonent in this case is Qae On the other hand, if the particle
s lole
moves along a fixed radial line, that is, if © is constant, then the radial component
is just 7 and the transverse component is zero. If r and 0 both vary, then the

general expressmn( 6) gives the acceleration.
Examplell: |

A honey bee™" % hones™ in on its hive" in a Spira]“*'”‘l’L path"L““ in such a way that
the radial distance decreases~* at a constant rate, r = b — Ct, while the angular
~ speed increases””* at a constant rate, = kt, Find the speed as a function of time.

w

Solution:
-

We have 7 = -c and # =0. Thus, from Equation 5, )
-- ViV e av8 g
v=- ce,t(b -cr)kteg
So
Wl - v=[ +b-ct) k)
which is valid for t < b/c. Note that v= ¢ both for =0, r = b and for t=b/c ,r=0.
Examplel2.

Ona honzontal turntable“ ©=* that is rotating at constant angular speed, a bug™ i
crawling =9 outward®" * on a radial line such that its distance from the center

increases quadratlcally' ** with time: r = bt’, 6= ot, where b and ® are constants.
Find the acceleration of the bug.

. [ Z ~
Solution: J-2ble ¢ b

We have 7= 2bt, # =2b, 6 = o, & = 0. Substituting into Equation 5, we find

| a = e,(2b — bt'a’) + egl0 + 2(2bt) ] . ,
. T 1
Vol L =b@-tfdle +dbatey > (IS (b (a-€") +(dbrot) l

magﬂlhi«_
Note that the rad1al component of the acceleration becomes negative for large t in..

this example although the radius is always increasing monotomcally with time.

EYVLE Jx.Hé
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1-15:Velocity and Acceleration in Cylindrical Coordinates:

In the case of three-dimensional motion, the position of a particle can be
described in cylindrical coordinates R, ¢, z. The position vector is then written as:

r =Rep t7e, -------m--m-moe- 1

where eg 1s a unit radial*”™ = vector in the Xy plane and e, is the unit vector
in the z direction. A third unit vector ¢, is needed so that the three vectors eg €, €
constitutew aright-handed triad, as illustrated in Figure. We note that k=e,.

Cootdonafe f,"jf}l‘.‘f""‘\

The velocity and acceleration vectors are

. . e . . z 5 ar-‘ihr«gﬂam.[
found by differentiating, as before. This again
involves derivatives of the unit vectors. An .,
argument similar to that used for the plane case 1
. . &
shows that o d KL e YV
. o .a\' (_9 ‘< 5.
e de, . ok 2 < o e :
' —R —ge and —F=-¢e e
dt ¢ dt - 0 ;:j ¥
And the unit vector €, does not change in %
directionso ¢

Subsitituting for the time derivative, we get

d= Rép + R ey + Rpéy + RPé, — Rp2ep + 78,
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The derivatives of the unit vectors is to differentiate the following equations,
which are the relationships between the fixed unit triad i ,j ,k and the rotated triad

eRI ewl ez : -y e . ‘f‘ - gt ;!: - ,‘mﬁ, ,L""«} o
e 2 S e G T et 1
x SRR c =1 COS¢+JSln¢ = ,,’“ ; - ; - TS
Ii ¥ P(K:s.ff‘;R Mt CP N T ¥ £
i ~ _ ~ . ~ ',- - ’:
U ¢, =i sing + jcosg Cp ¥ Cp T
‘-«.-. .-’ f/_{:ﬂ ¢ fi’i - (»{:}

oy P
-

VI & ) ¢ A - e
- al ‘f} e — k ~ i
z P'?_ ¥ !"{r - [of “,.'-

S
B &

The steps are left as an exercise. The result can also be found by use of the rotation

matrix.

1-16: Velocity and Acceleration in Spherical** Coordinates:

When spherical coordinates r, 6, ¢ are employed to describe the position of a
particle, the position vector is written as the product of the radial distance r and the
unit radial vector e, as with plane polar coordinates. Thus,

e \< & D

P SN hC s

S e 1 ' - . -
The direction of e, is now specified by the two angles 0 e,
and ¢. We introduce two more unit vectors, €, and e,
as shown in Figure. &

. oy
The velocity is: ’
« ot T e s
CEmE e gy il
: L de e : :

Our next problem is how to express the derivative — in term of the unit vectors in

dt
the rotated triad. We can derive relationships between i,7,k and &, €y, €p. By

expressing any unit vector in terms of its projections on the x,y,z coordinate axes. as
P -
a.n example i S . ﬁf/\, l. o --” bl ’;l ,.,'._' ‘j T ;‘{.i f,l

-"’ ). vy [ ) # 1

oot 8 =76 D)+ j@ ]+ k@ k)
. r r r r

EVAR
\ £ LU
et
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8. . i is the projection of the unit vector &, directly onto the unit vector I and is equal
1o cos @, (see page 8) the cosine of the angle between those two unit vectors.

We need to express these dot products in terms of 6 and ¢ not a.. We can obtain
desired relation by making two successive projections to get to the x-axis. First
project &, onto the xy plane, and then project from there onto the x-axis. The first
projection gives us a factor of sin 0, while the second yields a factor of cos ¢. The
magnitude of the projection obtained in this way is the desired dot product:

2
‘\,‘_‘ L)
¢ .7 =sinfcosg, & -]=sinfsing \ e
r . i LT oviatd &,;v ‘.;:’k A
and é -k=cosf R SO R
1 3 ; ’ -

In a similar way the relatlonshlp for 89 and €y can be opbtamed yalldmg the

fellowing relation: ¢, = T~ =70 0 0 0
o e = 1n¢9005¢+;smt951n¢+kcost9
A rrs L —1k son 4
e — i cos@cosg+ jcosfsing—ksing |t e 3
. Es
e = —ising+ jcosg

which express the unit vectors of the rotated triad in terms of the fixed triad 1,j,k.

Let us differentiate the first equation with respect to time. The result is:

~

r" =1(6cos 6 cos @ — ¢sinPsin @) + j(BcosOsin g+ gsinbcosg) — kfsind

We find that the above equation reduces to:
de . .
r=¢@sinfd+éfo
¢ ‘
The other two derivatives are found through a similar procedure. The results are

de dé ;

dt é e¢cos@ an dt e¢sm6’ e¢cosf9 (H.w)
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: o dé, dé, dé
Finally substituting egs. ( di’" , ;ta ed’ ) in eq.(2) we obtain:
§=éf;+é¢r¢sin9+é{9r6} I — 4

To find the acceleration, we differentiate eq. 4 with respect to time. This gives:

L dv
a= —
dt
5 o o dé . d(rdsing AL d(ré))
a=éi+7—-+ep — — + r¢psing ” + é + 9

S . - dé
Substituting for the unit vectors derivatives ( de’”

dég déqb .
: we obtain:
> dt ’ dt )

G = ( - rg sin’ 6 — r6?)é
+(r@+270 —r¢* sin @ cos 0)é
+(résin @ + 27 ¢sin 6 + 2rf¢ cos 9)é¢

giving the acceleration vector in terms of its components in the triad e,,eq.,

Examplel3:

.. o . d)f\pv '
A bead™™ slides®™ on a wire bent""* into the form™ of a helix, the motion of the

bead being given in cylindrical coordinates by R = b,@ wt, z =ct. Find the velocity
and acceleration vectors as functions of time.
u— R ?g—\-e‘:@t’c{)—i‘z ez

< (RuRPY)Ce + (2R D +RP Jep +Z ey
Differentiating, we find R =R=0¢p=wn¢=02=cz=0.So, from equation
for velocity and acceleration in cylindrical coordinates , we have:

Solution:

13 = bﬂ')éqb + Céz

—_— 2 A
= —bw €R
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1-17: Gradient » Divergence, and Curl :
The del opéra”t)ér (v) in rectangular coordinate is given by:
=1Ly -+ 2
o ay T % gz

The del operator is a vector that has no physical meaning or vector direction by
itself.

1-17-1: The gradient”™™:
PR NS RN AW -
Let ¢(x,y,z) be a differentiable at any point, therefore the gradient of ¢ is

-~

e et dop . dp .d¢
"',;s e j

PRI ot N

The folloWing compu{a_tion fc;i'mulas on gradient, which are easily proved, should be -
noted: |

1- V(A+B)=VA +VB
2- V(AB)=AVB + BVA

3V [%] _ B VAB_:-;'AV B

4-V V"=n V“‘l'v 4
1-17-2: The divei‘gence =,
Let
v(x,y.2) =iv, + jvy-+ kv,
Then the divergence of v (written div ¥ or V. % ) is

=, dvy dvy, dvy,
V.v=
v dx * dy * dz

Note that V.¥ # ¥.V
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Note the following properties of the divergence of a vector:

1- Its produces a scalar. o
N _."“’,.\.‘

2- The divergence of a scalar ¥, div ¥ make no sense.
3-V(A+B)=V.A+V.B
4-V.(VA=VV.A +A. WV

1-17-2: The curl™™"

The curl of the vector field v(x,y.z) =tv, + jv, + k v, is denoted by curlv or
(V x ¥) is:

Ji k
S d d d
curlv= Vxv = 4

d,
Ve Uy Vg
Note the following properties of the curl:

1. The curl of a vector is another vector.

2. The curl of a scalar V, Vx ¥, makes no sense.

e
r O

3.V x(A*B)= VXA+VXB »
(€-7)A - (BR)B - (A 06 A(SJ m
4.V x (A¥B) = A(V . B) - B(V . A) + (B.VA}- (A . VBE
6- The divergence of the curl of a vector vanishes,
that iS, V. (V X A) =0 - :} Lo rud * -

7. The curl of the gradient of a scalar is vanishes,

thatis, Vx V)V =0 T 0

™Y BQU{ +5‘U( = laplacian st Y

- Sty =
-_ R 2 2t \ aplackam oQetaba”
T oax o3t a2t _
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We can defined d# and V in the:

1- Cartesian Coordinate:

dr = idx + jdy + kdz -
- . d +Ad +,\d
_lx jdy dz

2- Cylindrical Coordinate:
dr = épdR + ésRdp + é,dz
V= éR—d-+ é¢l—€i—+ éz—ci
dR Rd¢ dz
3- Spherical coordinate:
d7 = &,dr + é,rdd + ésrsinddg

A

d 1d N 1 d
dr ' %rdo 'e¢rsin9d¢

Example 14:

- . . k
The potential that represents an inverse square force is V(r) = =, where

r=(x*+ y?+22)/2  Using the definition F = - Vv, calculate the component |
of this force. '

Solution:

Since V(r) = If and
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Another solution by using spherical coordinate

s, d ,1d 1 d
o T e 0

rsind @

31:'\“
1 -T
Example 15: If ¢ =~ where r = (x*> +y* + 2°)"”, show that Vo = -
Solution:
‘{?(ﬁ) (afi +a,€i + )(13+ '\; j;r)
s § e o LS S R
ax 7 gy iz
; -~ ; 5 %} 3 ¥
= (ww,‘%i AN 23:&’) (x4 y? 4 2
2 2 ; o
* A Foo03 2o, 4 ¥ TN
= e XE V] A IRUXT YT 7)) =
e

Example 16: Find a unit vector normal to the surface xy +xz=1 at the point (—1,1,1).
Solution:
i

= (v 4 20+ (2xy)] +xk
=2 =27 —k,ar(—1.1, 1)

NI T )
Vixy? +x1) = (f‘ oy Tias tk :‘i”“) (xy* + x2) = M=)

A unit vector normal to the surface is obtained by dividing the above vector by its
magnitude. Hence the unit vector is

o 7 T E 2 ) Zr_\ 2 ” i ~
(2 —2] = DI + (=2 + (DT = si-3i—3h
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Example 17:

DL
(a) Show that F = (2xy + z° ) 1 + X* J + x¥z k, is a conservative force field.
(b) Find the scalar potential.

(¢) Find the work done in moving a unit mass in this field from the point (1, 0, 1) to
(2,1, -1).

Solution: (a) It is sufficient to show that Cuorl F = 0

i Jj Kk
0 Jd 4d N n N

VxF= — o 7 | =0 j2z —22)+ k(2x ~ 2x) =0
ax dy 9z

2xy + 77 x° 2xz

(b) d® = F.dr = ((2xy + z9)i + x2J + 2xzk)).(idx + jdy + kdz)
= (2xy + z3) dx + x* dy + 2xzdz
= (2xydx + x* dy) + (% dx + 2xzd2)
= d(x’y) +d(’x) = d(x*y + x2%)
Therefore ® = x>y + xz% + constant

(c) Work done = &5 — &y = 5.0

Example 18: If ¢ = x°yZ’ and A= xzi — 37j + 2x° yk find:
a- Vo b-V.A c- Vx A d- div (¢A) e- curl (pA)

Solution:

I B 3 :}e,b &b b
k— —k
c ¢ )Qb ax av gz
= 2xyz i+ xz;-""’:.i + 3,\42}.' k

a
m;—(\t i+ —(A vz )]—i— (\)1)h

. Y 3 - 3
(B) VA= (if(—¥+_i—+k)—) xzi — 7+ 2xhK)
[N g LI

= x( ‘)+——(v—¥ )+—(?_\ Fl=1z—=2p

'} J} 8 b I
() VxA= (;i\-+ it k:) x (xzi — 7 + 2x71k)

a ay o

i o k
= |dfdx d/ty §ioz

Xz ~y2 2 \”11

(ﬂ_t’(? )__{_—; ))3+(9:(}“) f}x(h ”‘))1+(3,x'(' ) 3}'(1—))1\

u2v3+(\ -4u)|
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() divi{pA)=V. (qf;fk)m‘? (\ yetio *j-iw;\ 12 2K)

ENLIN ~)+ ) (26
ax

= 3x* _v:' — 3y 1 = %6\4 222

() curl {pA) = Vx {¢pA) =V x (xsjf:’ii - _.\fzy‘3 ::3j + 231:4‘?2 =k)

/ i i k
= yox v
4 233 a4

llm —XTpT _‘«IL

= (4x" 1_ -3 ; z )l + (437 LH 3_\_3_1!2:3)3. — (l:r_;}r3 + ¥ YK
Example 19: Prove V- (¢A) ={Vo)- A+ HV - A).

Solution: . (gA) = V- (p1i + 6hoi + 03K)
i} a0 i .
=2 GA) T (B + Ay
0 ok iAd a4y dAdy
::,}—Gbgii—l-ﬂh—i— As +¢({ L F S )
ax ay dy iz

i@, - a } '
- (%ﬁ ﬁ?, +‘j_“‘""k) Ay Azj + A3K)

a il i . .
—{—Q’(—ﬂ +—"—}+9—k) (Al + Aaj + A:zk)

C = (V) A+ (V- A)

Example 20: prove div curl A =0

Solution:

i i i k |
|

aidx Moy a0z

A 3 ?JA: . a9 | iA T\, A A i |
V- = —— — = .
[( P )' + ( iz ax )3 + ( ax v )k
& 04y 84y d fo4;  ads d (fddy  0A,
=il il e iveul Bl B slon Eeruunio
ax \ dy dz J ooy \ iz ax dz \ dx ay

FAy, &y Fdy FAy FA, TA

diveumrl A=V (VxA)=V

Il

dxdy  dxdr  dydz drax prax ozoy
= ()
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Problems of chapter one

1-  Assume that two vectors A and B are known. Let C be an unknown vector such that
A . C=yis a known quantity and A x C = B. Find C in terms of A, B, 4, and the

magnitude of A.

Solution: S oy- s o B
B:wk4qu=denﬁ AC}mCﬂnGmﬁ
A
AC = ACcosf = u ~C, =Ceosf=2
= BxA ' A
e
L L e &)
A j’ A AB \ 4

ngi
|

%,ﬁ+?§xgi

H

i,

2- Find a unit vector normal to the plane containing the two vectors
A=27+j-F and B=i-j+2k

Solution:

i-7 &
oD 2% ap - / el v
AxB=2 1 -lf=1-5-3F 4 'jqxg’: (5 (-3 = 35
1 -1 2 "
. AxB . the vector
no= o {umit vecior = ———
‘,4 x B s magnitide

3- A racing car moves on a circle of constant radiﬁs b. If the speed of the car
varies with time ¢ according to the equation v = ¢ where ¢ is a positive constant,
show that the angle between the velocity vector and the acceleration vector is

45° at time t = /b /c (Hint: At this time the tangential and normal components

of the acceleration are equal in magnitude.)
Solution: vV =VT = CItT

- . p2 c2t?
a=v‘r+?n=CT+

n
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v=#Jbc and a=ct+cn

STe

at 7/ =
cos&-—‘—“&-— c bc___ ]
va  JbeJ2¢? J2

4- A small ball is fastened to a long rubber band and twirled around in such away
that the ball moves in an elliptical path given by the equation:

r(£) = ib cos wt + j2b sin 0t

where b and ® are constants. Find the speed of the ball as a function of 7. In
particular, find v at t =0 and at t = © /20, at which times the ball is, respectively, at
its minimum and maximum distances from the origin.

Solution: 5(1) = —ibewsin (o1 )+ j2bwcos (o)
! 1
l\‘zl = (bz{r}z sin’ ot + 46w’ cos’ wr)3 = bw(i +3cos’ 501)3

a(1)=~ibw’ coswi - j2bo’* sinwt
i
|| = bew® (1 + 3sin” @i )?

at i=0, [f|=2b0: at 1=-—. [§|=he
2w
5- A bee goes out from its hive in a spiral path given in plane polar coordinates by

r= be", 0=ct where b, k, and ¢ are positive constants. Show that the angle
between the velocity vector and the acceleration vector remains constant as the

bee moves outward. (Hint: Find v. a/va)
Solution: ¥ =ré, +r0é, = bke"é, +bee"'é,
i =(F~r0?)é, +(rf+270), = b(k* —c*)e"é, + 2bckee,
bk (kz _‘cz )ew + b ket

V-a
cos¢ = - = ” : T
“he" (kz +¢? )5 he* [(kz ch)z +;4k(:21'c2:|2
k(k?+c° :
cos¢ = ( ]+c) = u — . a constant
(k3+c2)5(k2+c3) (k2+c3)5
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6- An ant crawls on the surface of a ball of radius b in such a manner that the ant's
motion is given in spherical coordinates by the equations

r=b p=wt = —725[1 + %cos(m}t)]

Find the speed of the ant as a function of the lime t. What sort of path is represented
by the above equations?
Solution:

V=¢r+ergsind+é,rd

o] 1 : .
¥ = ¢,bewsin < —g[l+—icos(4mt)J} —egbg—wsm(:lmf)

p—

v = ébw cos %cos(4m[)}§éobw%sin(4(:):)

2 2
|x‘5| = bw [0052 (% cos 4(01) + % sin’ 4(91]

i "}/J"’,};;
Path is sinusoidal oscillation about the equator.

7- Prove that v. a = vo and, hence, that for a moving particle v and a are
perpendicular to each other if the speed v is constant. (Hint: Differentiate both sides
of the equation v * v = v* with respect to t. Note, ¥ is not the same as |a| I It is the
magnitude of the acceleration of the partied along its instantaneous direction of

motion.)

Solution:




8- Show that the tangential component of The acceleration of a moving particle is

given by the expression: ven
a, =—
v

s (v-a)? 1/2
and the normal component is therefore g, = (42 - af) - [ 2 .g ]

solution:

v=vf and a=a.rr+an
_ v.a
v-a=va,. S0 a, =——

L!
.

)2

9- A wheel of radius 5 rolls along the ground with constant forward acceleration
a,. Show that, at any given instant, the magnitude of the acceleration of any point
on the wheel is (a2 + v*/b?)'/? relative to the center of the wheel and is also
a,[2 + 2cos6+ v*/aZb? — (2v?%/a,b)sind]*/? relative to the ground. Here v
is the instantaneous forward speed, and © defines the location of the point on the
wheel, measured forward from the highest point. Which point has the greatest
acceleration relative to the ground?

RN 2
o’ =al+a;. so a,=(a’-a

LB ¥}

Solution

7, =ibsind+ jbcosd
V., = ibO cosd — jhOsin 0 - P
a., =fl)(9c030—9:si:1 ())--}b(ésin(?%-()! cosﬁ) h v,

. )

at the point 6 = 5 V= -V

So, [p,|=b0=v

Vn‘f
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"
1—'2 v

A p=at+—n

Now, a4, ,=v T+

3
N IR
|a“,,|-~ a; +b2

Vo=¥+V , and d,=d, +a.,

[N

2

-

- a v [ a v
dp, =i|a +b| —cos@——sind | |- jb| —sinf +—cos
ap a. (b P ] J [h sin e cosﬁ}

|-

4 2
|&P|:an[2+2cos()+ :2—21 siné)J
{O

b  ab
dp, 1s a maximum at @ =0 i.c.. at the top of the wheel.
: 2v°
-2sin@ ———cosf =0
a

10- Use vector algebra to derive the following trigonometric identities

(a) cos(8— ¢) = cosBcosg+ sinf sing
(b) sin{(@— ¢) = sinB cos¢ — cosP sing

Solution:
(a) a=::cosc9+j'sin0
2 b=i;cos¢)+jsinqp
g P a-b =cos(6’~ga):(fcos€+}sin 9)-(fcos¢+jsin¢7]
\ @

cos(0-¢}=cosfcosg+sindsing

(b) bxa =I.£'lsin (0—90) =|(fcos()+_}sin6)x(fcos¢+}sin go)l
sin(#-g)=sinfcos@-cosPsing
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Problems (homework)

Consider a cube whose edges are each of unit length. One corner coincides with the origin
of an xyz Cartesian coordinate system. Three of the cube’s edges extend from the
origin along the positive direction of each coordinate axis. Find the vector that begins at the
origin and extends

(a) along a major diagonal of the cube;

(b) along the diagonal of the lower face of the cube.

(¢} Calling these vectors Aand B, find C= A x B.

(d) Find the angle between A and B.

Given the time-varying vector
A=iat +jBt* + kyt’

where @, B, and ¥ are constants, find the first and second time derivatives dA/dt and
d*A/dt?,

For what value (or values) of g is the vector A = ig + 3j + k perpendicular to the vector B =
iq — gj + 2k?

3- A buzzing fly moves in a helical path given by the equation

r(t) =ib sinwt + jb cos @t + ket’

Show that the magnitude of the acceleration of the fly is constant, provided b, @, and ¢ are
constant.

4- A particle moves in a helical path such that its position in cylindrical coordinate

5-

given by
R=h b=ct =t

Find the speed and the magnitude of the acceleration as a function of .

Express the vector 2i + 3j — k in the primed triad I'{’k’ in which the x’-axes are rotated
about the z-axis (which coincides with the z’-axis) through an angle of 30°.
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1-10: Derivative and Integration of a Vector:

Consider a vector A, whose components are functions of a single variable u.
The vector may represent position, velocity, and so on. The parameter u is
usually the time ¢, but it can be any quantity that determines the components of
A. Let:

A@)=7 A,)+] A () +k A, w)

Then

Derivative of a Vector is a vector whose components are ordinary derivatives.

The derivative of the sum of two vectors is equal to the sum of the derivatives,
namely,

4 g+ L+ LE
du du  du
The rules for differentiating vector products obey similar rules of vector calculus.

If »is a scalar function of u then,

I Sy L

du du du

_d_(A.B')z i’li.§+j._‘_i_
du dau

Notice that it is necessary to preserve = the order of the terms in the derivative

of the cross product.

The integration of a vector A as a function of any variable say time (1) can be
written as:

[Aar =fIAx(t)dt+}jAy(t)dt+l€jAz(t)dt

i
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1-11: Position Vector of a Particle: Velocity and Acceleration in

Rectangular Coordinates
The position of a particle can be spec1ﬁed by a .
single vector, namely, the displacement - S of the
particle relative to the origin of the coordinate system.
This vector is called the position vector of the particle. 7
In rectangular coordinates (as shown in the Figure), the / y
position vector is simply: / m

F:fx+jy+£z
The components of the position vector of a moving particle are functions of the
time, i.e.
x=x(t), y=y() ,z=2z(t)

The derivative of r with respect to ¢ is called the velocity, which we shall denote
by v:

Y sy ip+kz
dt

=<l

where the dots indicate”' ** differentiation with respect to 7.

Let us examine the geometric significance of the velocity vector. Suppose a
particle is at a certain position at time t. At a time At later, the particle will have
moved from the position r(t) to the position r(t + At). The vector dlsplacement
during the lime interval At is:

Ar =r1(t + At) - 1(t)

so the quotlent fd=> Ar/At is a vector that is parallel to the displacement. As
we consider smaller and smaller time intervals, the
quotient Ar/At approaches a limit dr/dt, which we call
the velocity. The vector dr/dt expresses both the
direction of motion and the rate. This is shown
graphically in figure. In the time interval At, the
particle moves along the path from P to P. As At
approaches zero, the point P' approaches P, and the
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Co g
direction of the vector Ar/At approaches the direction of the tangent to the path at

1 Ilways tangent to the path of motion.. -
P. The velocity vector | is alway 5 nt e E:,-ﬂ,\mf- otion. ATCMEEINY

The magnitude of the velocity is called the speed. In rectangular components the
speed is :

= (2 + 37 422

The time derivative of the velocity is called the acceleration. Denoting the
acceleration with a, we have

In rectangular components,

SIS gy ‘“V"‘”‘-—ba—szr]yﬁ—kz

Thus, acceleration is a vector quantity whose components, in rectangular
coordinates, are the second derivatives of the positional coordinates of a moving
particle.

Example7: Let us examine”™ the prOJectﬂe motion represented by the
equation:

(P ’ .f:";;_.'u‘-:"' —" - ~ A tz
y R r(t)= zbt+](ct—g7j

This represents motion in the xy plane, because the z component is constant and
equal to zero. The velocity v is obtained by differentiating with respect to ¢, hence,

17—§i—fb+j'(c—gt)
. . . - B - -8
The acceleration is given dt . by v: (o7~ 541 )
a:__z_gj“- R
dt -

Thus, a is in the negative y direction and has the constant
magnitude g. The path of motion is a parabola™ %",
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Example 8: (Circular Motion)

Suppose the position vector of a particle is given by:

F= fbsina)r+jbc_osa)t 4 e C

The distance from the origin remains constant: L e

I
r =|F|=(” sin® wr+ b* cos? ) = b

4(”;"

So the path is a circle of radius b centered at the origin. Differentiating r, we find

the velocity vector : !
. dr Ao
v:?l;:ia)bcosa)t—Ja)bsmwt | &

The particle traverses” ™ its path with constant speed:

1
v =|v|=(w’bh’ cos® wt+ »’h* sin’ a)r)é =bw

The acceleration is:
av

a= = —i w*bsinwt— jw’bcoswr
{
In this case the acceleration is perpendicular to the velocity #La |, because the
dot product of v and a vanishes: L
: e Yo f g ke B AL T T O -

Do e

LY Ve
¥

V-a=-wb’sinotcoswt + Fo’b? sin wt coswrt = 0

Comparing the two expressions for a and r, we find

Lo ow St
z : P P et
d=-—iw’bsinwt- jo’bcoswr SN e
r=1ibsinwt + jbcoswt b PP
N E R A~Z . 7 e
{--{a'\{_*’;q a=—ar r
£ _

The path is a circle with radius b
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1-12: Relative velocity:

,

LY

mled =
Jet

~ Consider two particles whose position fare 1, and 1,
respectively. The displacement of the second particle with
respect to the first is the difference to-t;which we shall call rp,.

i

o

The velocity of the second particle relative to the first which we

shall call the relative velocity is: . / V
d y d - - i bt \:
Viz = ;;2 = (rzdt I‘;) = ¥y — V1 I

By transposing % v1, for the actual velocity of particle 2 in terms of the
velocity of particle 1 and the relative velocity of the two particles we have:

L c VTV TV .

oo ‘.
N T
o 3

Example 9: BRI

L7

A wheel of radius b rolls along the ground with a forward sf)eed find the
velocity of any point P on the tim relative to the ground v Loaepoa ﬁ/ (¢

A e e el s
Solution: The motlon of point P is circular and suppose that
the motion is clockwise about the origin center of wheel, in -
this case. Then, we First consider the position vector is

given by expression:

Tor = ibcogs§ — jbsin @

where® =t - =T
NI d.e IR

the time derivative™ gives the velocity of P relative to the center of the wheel

T ar. ey '1,; ,;f A . = e : o
LA e e o Vel = —ibw sin 8 — jbw cos 8

Since the angular velocity @ = v,/b, and since the velocity of the center of the
wheel relative to the ground is iv,, then the true velocity of P relative to the ground

s wees oo Vo= iy — dbw SIn 8 — jbw cos @

B ddie © = ipg(l — sin 8) — jvecos 8
23




Example 10: The following relations represent the position of two particles move
in the same circular path.

r; =ibsinot + j bcoswt and r,= i beosot - j bsinwt

Find the relative velocity, the magnitude of the relative velocity, and the time rate
of the change of the displacement between the two particles, all as a function of
time?

solution:
since Va1 V-V
v1¥ i bocosot —j bosinwt
Vo= -1 bwsinmt —j bwcosot
therefore the relative velocity is
Vpq = -1 bo(sinwt + coswt )- j ba( coswt - sinot)
V211 = bo (sin“ot + coszq)t + 2sinot cosot+ cos“ot+ sin‘wt - 2sinot coswt)"”?
= bw(2) ' this is the magnitude of the relative velocity
The time rate of the change of the displacement between the two particles is :
47 - 7]
and since
r-r=1b (coswt - sinwt)- j b (sinot + cosot)
r; — 11| = b (cos’ot+ sin®wt - 2sinot cosmt + sinZot + cos’ot + 2sinwmt cosat) '
— b(2)2
then 27 -7 =0

Note: That the time rate of the change of the displacement between the two
. particles is not the same as the magnitude of the relative velocity.
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1-13: Tangential and normal componenet of acceleration:

Any vector can be expressed as the product of its magnitude and a unit vector
giving its direction. the velocity vector v can be written as the product of the
particle's speed v and a unit vector t that give the direction of particle's motion,
thus

Y= vT

- -

ey ‘u % s ~‘“ ;,. }_}1
the vector t is called the unlt tangent vector. As the particle moves the speed v

may change and the direction of © may change. By using the differentiation of
product of scalar and vector to obtain acceleration vector the result is:

s

J')-‘?’ (G "‘-J—*-Lsu
_dav_dlt | N dt ‘1
a=— == vTtv ( ) L

N :f a‘\,c l'.,f"-'d

b

w7

. . . . . dr
The unit vector T being of constant magnitude, has a derivative 2 eXpress the

change in direction of T with respect to time.

The particle moves a distance As along the path from
the initial point P to another point P' at time interval At. Let
denote the unit tangent vectors at P and P' by 7 and 7,
respectively as shown in the figure.

The directions of these two units vectors differ by angle
Ay as shown in figure, for small value of Ay , the

difference At approaches Aqf in magmtudaj; At = Ay )

and the direction of At become perpendicular to the direction of t

: dr .
(At L 1) when Ay and As — zero. The derivative ﬁ is of

magnitude unity (|d_| = 1) and is perpendicular to t (—J_ T)

PR )4’1’5"

So that we call it the umt norﬁlal vector and denote it by n:

i
=1
©
&
b

&5
L




. . . d .
To find the time derivative d—z , we use the chain rule as follows:

dr_drdy dyr ds v
dt dpdt “dsdt " p

in which p = ;—; is the radius of cur;eture of the path of moving particle at P.

. dt . '
Substitute the value of EE mnto equation (1) to find:

U2

aAa=vT+ —n
Je,

Thus we can note that the acceleration of a moving paricle has two components:

1- Tangential component (in the direction of motion) a, =v = §
A S e
2- Normal component, also called centripetal ‘acceleration (directed toword the
- 2
center of curvature on the concave side of the path motion Ay = %—

The magnitude of the total acceleration is given by:

J di | R

If the particle moves on a circle with constant sgee’;(!i then
the acceleration vector is of magnitude v*/R, , where R, is the
raduis of the circle.The acceleration vector is always points to
the center in this case as shown in figure.

However if the speed is not constant but increase at a
certain rate v then the aeceleratlon has a forward component
and is slanted™"" away  from the center of circle towards
the direction as shown in figure. What happen if the speed
decrease at a certain rate v?




i
c\,yz—-—»"wut_} u\.u)py{

1-14: Velocity and Acceleration i in rPlane Polar Coordinates:
It is often convenient to employ polar coordinates r, 0 to express™" the
position of a particle moving in a plane The position of the particle can be wrltten

as the product of the radfla] distance r by a unit radial vector e;:
UL

= re,

\}_&“ q*\..s "_).J’J'

As the particle moves, both r and e, vary; thus, they are both functions of the time.

Hence, if we differentiate with respect to t, we have

_dr _ de,
dt dt \\

To calculate the derivative de/dt, let us consider the vector diagranfshown in

Figure.

€y

‘,....‘\: \. : pwu“
When the direction of r changes by an amount A6 the corresponding change Aer of
the unit radial vector is as follows:

The magnitude |Ae, | is approximately equal to AO (|Ae, |= AB) and the
direction of Ae, is very nearly perpendicular to e, (Ae, L e ). Let us introduce
another unit vector, eg, whose direction is perpendicular to e;. Then we have

Ae, =~ egAD

If we divide by Af and take the limit as At—0, we get Q

de de

d‘t =€y A = 989 """""" 2
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For the time derivative of the unit radial vector, we can argue in similar way that
the change in the unit vector ey is given by:

s
Aeg~ e AD S diveekivn o Beg oppsite e

Here the minus sign is inserted to indicate that the direction of the change is
opposite to the direction of e, as shown in Figure. Consequently, the time
derivative is given by '

de, dé

& o ar = — e.,,é -------- 3
By using Equation 2 for the derivative of the unit radial vector, we can finally
write the equation for the Velocny as:

rachel

V= re + rGea ......... 4

o lraviyerie

Thus, 7 is the radial*™ component' ' of the velocity vector, and 78 is the

An hal)
transverse component.

To find the acceleration vector, we take the derivative of the velocity with
respect to time. This gives

a=%-re +r%+(r9+r9)e9+r9d:te -

The values of de,_/dt and dey/dt are given by Equations 2 and 3 and yield the
following equation for the acceleration vector n plane polar coordinates:

s rﬂz- 1 8€s -I-YS{?&‘«—(.’Q’“-- c§el
=(#-r6%)e, +(r+210), - 5
Thus, the radial component of the acceleratlon vector is
a, =1— rg*

and the transverse component is: p

1

ay =10+218 == —(r’)
r dt

The above results show, for instance, that if a particle moves on a circle of
‘constant radlus b, so that 7 = 0, then the radial component of the acceleration is of
rn_agnitude be2 and is directed inward™"' toward the center of the c1rcular path.

a5
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o3
The transverse comgonent in this case is Qae On the other hand, if the particle
s lole
moves along a fixed radial line, that is, if © is constant, then the radial component
is just 7 and the transverse component is zero. If r and 0 both vary, then the

general expressmn( 6) gives the acceleration.
Examplell: |

A honey bee™" % hones™ in on its hive" in a Spira]“*'”‘l’L path"L““ in such a way that
the radial distance decreases~* at a constant rate, r = b — Ct, while the angular
~ speed increases””* at a constant rate, = kt, Find the speed as a function of time.

w

Solution:
-

We have 7 = -c and # =0. Thus, from Equation 5, )
-- ViV e av8 g
v=- ce,t(b -cr)kteg
So
Wl - v=[ +b-ct) k)
which is valid for t < b/c. Note that v= ¢ both for =0, r = b and for t=b/c ,r=0.
Examplel2.

Ona honzontal turntable“ ©=* that is rotating at constant angular speed, a bug™ i
crawling =9 outward®" * on a radial line such that its distance from the center

increases quadratlcally' ** with time: r = bt’, 6= ot, where b and ® are constants.
Find the acceleration of the bug.

. [ Z ~
Solution: J-2ble ¢ b

We have 7= 2bt, # =2b, 6 = o, & = 0. Substituting into Equation 5, we find

| a = e,(2b — bt'a’) + egl0 + 2(2bt) ] . ,
. T 1
Vol L =b@-tfdle +dbatey > (IS (b (a-€") +(dbrot) l

magﬂlhi«_
Note that the rad1al component of the acceleration becomes negative for large t in..

this example although the radius is always increasing monotomcally with time.

EYVLE Jx.Hé
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1-15:Velocity and Acceleration in Cylindrical Coordinates:

In the case of three-dimensional motion, the position of a particle can be
described in cylindrical coordinates R, ¢, z. The position vector is then written as:

r =Rep t7e, -------m--m-moe- 1

where eg 1s a unit radial*”™ = vector in the Xy plane and e, is the unit vector
in the z direction. A third unit vector ¢, is needed so that the three vectors eg €, €
constitutew aright-handed triad, as illustrated in Figure. We note that k=e,.

Cootdonafe f,"jf}l‘.‘f""‘\

The velocity and acceleration vectors are

. . e . . z 5 ar-‘ihr«gﬂam.[
found by differentiating, as before. This again
involves derivatives of the unit vectors. An .,
argument similar to that used for the plane case 1
. . &
shows that o d KL e YV
. o .a\' (_9 ‘< 5.
e de, . ok 2 < o e :
' —R —ge and —F=-¢e e
dt ¢ dt - 0 ;:j ¥
And the unit vector €, does not change in %
directionso ¢

Subsitituting for the time derivative, we get

d= Rép + R ey + Rpéy + RPé, — Rp2ep + 78,
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The derivatives of the unit vectors is to differentiate the following equations,
which are the relationships between the fixed unit triad i ,j ,k and the rotated triad

eRI ewl ez : -y e . ‘f‘ - gt ;!: - ,‘mﬁ, ,L""«} o
e 2 S e G T et 1
x SRR c =1 COS¢+JSln¢ = ,,’“ ; - ; - TS
Ii ¥ P(K:s.ff‘;R Mt CP N T ¥ £
i ~ _ ~ . ~ ',- - ’:
U ¢, =i sing + jcosg Cp ¥ Cp T
‘-«.-. .-’ f/_{:ﬂ ¢ fi’i - (»{:}

oy P
-

VI & ) ¢ A - e
- al ‘f} e — k ~ i
z P'?_ ¥ !"{r - [of “,.'-

S
B &

The steps are left as an exercise. The result can also be found by use of the rotation

matrix.

1-16: Velocity and Acceleration in Spherical** Coordinates:

When spherical coordinates r, 6, ¢ are employed to describe the position of a
particle, the position vector is written as the product of the radial distance r and the
unit radial vector e, as with plane polar coordinates. Thus,

e \< & D

P SN hC s

S e 1 ' - . -
The direction of e, is now specified by the two angles 0 e,
and ¢. We introduce two more unit vectors, €, and e,
as shown in Figure. &

. oy
The velocity is: ’
« ot T e s
CEmE e gy il
: L de e : :

Our next problem is how to express the derivative — in term of the unit vectors in

dt
the rotated triad. We can derive relationships between i,7,k and &, €y, €p. By

expressing any unit vector in terms of its projections on the x,y,z coordinate axes. as
P -
a.n example i S . ﬁf/\, l. o --” bl ’;l ,.,'._' ‘j T ;‘{.i f,l

-"’ ). vy [ ) # 1

oot 8 =76 D)+ j@ ]+ k@ k)
. r r r r

EVAR
\ £ LU
et
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8. . i is the projection of the unit vector &, directly onto the unit vector I and is equal
1o cos @, (see page 8) the cosine of the angle between those two unit vectors.

We need to express these dot products in terms of 6 and ¢ not a.. We can obtain
desired relation by making two successive projections to get to the x-axis. First
project &, onto the xy plane, and then project from there onto the x-axis. The first
projection gives us a factor of sin 0, while the second yields a factor of cos ¢. The
magnitude of the projection obtained in this way is the desired dot product:

2
‘\,‘_‘ L)
¢ .7 =sinfcosg, & -]=sinfsing \ e
r . i LT oviatd &,;v ‘.;:’k A
and é -k=cosf R SO R
1 3 ; ’ -

In a similar way the relatlonshlp for 89 and €y can be opbtamed yalldmg the

fellowing relation: ¢, = T~ =70 0 0 0
o e = 1n¢9005¢+;smt951n¢+kcost9
A rrs L —1k son 4
e — i cos@cosg+ jcosfsing—ksing |t e 3
. Es
e = —ising+ jcosg

which express the unit vectors of the rotated triad in terms of the fixed triad 1,j,k.

Let us differentiate the first equation with respect to time. The result is:

~

r" =1(6cos 6 cos @ — ¢sinPsin @) + j(BcosOsin g+ gsinbcosg) — kfsind

We find that the above equation reduces to:
de . .
r=¢@sinfd+éfo
¢ ‘
The other two derivatives are found through a similar procedure. The results are

de dé ;

dt é e¢cos@ an dt e¢sm6’ e¢cosf9 (H.w)
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: o dé, dé, dé
Finally substituting egs. ( di’" , ;ta ed’ ) in eq.(2) we obtain:
§=éf;+é¢r¢sin9+é{9r6} I — 4

To find the acceleration, we differentiate eq. 4 with respect to time. This gives:

L dv
a= —
dt
5 o o dé . d(rdsing AL d(ré))
a=éi+7—-+ep — — + r¢psing ” + é + 9

S . - dé
Substituting for the unit vectors derivatives ( de’”

dég déqb .
: we obtain:
> dt ’ dt )

G = ( - rg sin’ 6 — r6?)é
+(r@+270 —r¢* sin @ cos 0)é
+(résin @ + 27 ¢sin 6 + 2rf¢ cos 9)é¢

giving the acceleration vector in terms of its components in the triad e,,eq.,

Examplel3:

.. o . d)f\pv '
A bead™™ slides®™ on a wire bent""* into the form™ of a helix, the motion of the

bead being given in cylindrical coordinates by R = b,@ wt, z =ct. Find the velocity
and acceleration vectors as functions of time.
u— R ?g—\-e‘:@t’c{)—i‘z ez

< (RuRPY)Ce + (2R D +RP Jep +Z ey
Differentiating, we find R =R=0¢p=wn¢=02=cz=0.So, from equation
for velocity and acceleration in cylindrical coordinates , we have:

Solution:

13 = bﬂ')éqb + Céz

—_— 2 A
= —bw €R
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1-17: Gradient » Divergence, and Curl :
The del opéra”t)ér (v) in rectangular coordinate is given by:
=1Ly -+ 2
o ay T % gz

The del operator is a vector that has no physical meaning or vector direction by
itself.

1-17-1: The gradient”™™:
PR NS RN AW -
Let ¢(x,y,z) be a differentiable at any point, therefore the gradient of ¢ is

-~

e et dop . dp .d¢
"',;s e j

PRI ot N

The folloWing compu{a_tion fc;i'mulas on gradient, which are easily proved, should be -
noted: |

1- V(A+B)=VA +VB
2- V(AB)=AVB + BVA

3V [%] _ B VAB_:-;'AV B

4-V V"=n V“‘l'v 4
1-17-2: The divei‘gence =,
Let
v(x,y.2) =iv, + jvy-+ kv,
Then the divergence of v (written div ¥ or V. % ) is

=, dvy dvy, dvy,
V.v=
v dx * dy * dz

Note that V.¥ # ¥.V
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Note the following properties of the divergence of a vector:

1- Its produces a scalar. o
N _."“’,.\.‘

2- The divergence of a scalar ¥, div ¥ make no sense.
3-V(A+B)=V.A+V.B
4-V.(VA=VV.A +A. WV

1-17-2: The curl™™"

The curl of the vector field v(x,y.z) =tv, + jv, + k v, is denoted by curlv or
(V x ¥) is:

Ji k
S d d d
curlv= Vxv = 4

d,
Ve Uy Vg
Note the following properties of the curl:

1. The curl of a vector is another vector.

2. The curl of a scalar V, Vx ¥, makes no sense.

e
r O

3.V x(A*B)= VXA+VXB »
(€-7)A - (BR)B - (A 06 A(SJ m
4.V x (A¥B) = A(V . B) - B(V . A) + (B.VA}- (A . VBE
6- The divergence of the curl of a vector vanishes,
that iS, V. (V X A) =0 - :} Lo rud * -

7. The curl of the gradient of a scalar is vanishes,

thatis, Vx V)V =0 T 0

™Y BQU{ +5‘U( = laplacian st Y

- Sty =
-_ R 2 2t \ aplackam oQetaba”
T oax o3t a2t _
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We can defined d# and V in the:

1- Cartesian Coordinate:

dr = idx + jdy + kdz -
- . d +Ad +,\d
_lx jdy dz

2- Cylindrical Coordinate:
dr = épdR + ésRdp + é,dz
V= éR—d-+ é¢l—€i—+ éz—ci
dR Rd¢ dz
3- Spherical coordinate:
d7 = &,dr + é,rdd + ésrsinddg

A

d 1d N 1 d
dr ' %rdo 'e¢rsin9d¢

Example 14:

- . . k
The potential that represents an inverse square force is V(r) = =, where

r=(x*+ y?+22)/2  Using the definition F = - Vv, calculate the component |
of this force. '

Solution:

Since V(r) = If and
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Another solution by using spherical coordinate

s, d ,1d 1 d
o T e 0

rsind @

31:'\“
1 -T
Example 15: If ¢ =~ where r = (x*> +y* + 2°)"”, show that Vo = -
Solution:
‘{?(ﬁ) (afi +a,€i + )(13+ '\; j;r)
s § e o LS S R
ax 7 gy iz
; -~ ; 5 %} 3 ¥
= (ww,‘%i AN 23:&’) (x4 y? 4 2
2 2 ; o
* A Foo03 2o, 4 ¥ TN
= e XE V] A IRUXT YT 7)) =
e

Example 16: Find a unit vector normal to the surface xy +xz=1 at the point (—1,1,1).
Solution:
i

= (v 4 20+ (2xy)] +xk
=2 =27 —k,ar(—1.1, 1)

NI T )
Vixy? +x1) = (f‘ oy Tias tk :‘i”“) (xy* + x2) = M=)

A unit vector normal to the surface is obtained by dividing the above vector by its
magnitude. Hence the unit vector is

o 7 T E 2 ) Zr_\ 2 ” i ~
(2 —2] = DI + (=2 + (DT = si-3i—3h
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Example 17:

DL
(a) Show that F = (2xy + z° ) 1 + X* J + x¥z k, is a conservative force field.
(b) Find the scalar potential.

(¢) Find the work done in moving a unit mass in this field from the point (1, 0, 1) to
(2,1, -1).

Solution: (a) It is sufficient to show that Cuorl F = 0

i Jj Kk
0 Jd 4d N n N

VxF= — o 7 | =0 j2z —22)+ k(2x ~ 2x) =0
ax dy 9z

2xy + 77 x° 2xz

(b) d® = F.dr = ((2xy + z9)i + x2J + 2xzk)).(idx + jdy + kdz)
= (2xy + z3) dx + x* dy + 2xzdz
= (2xydx + x* dy) + (% dx + 2xzd2)
= d(x’y) +d(’x) = d(x*y + x2%)
Therefore ® = x>y + xz% + constant

(c) Work done = &5 — &y = 5.0

Example 18: If ¢ = x°yZ’ and A= xzi — 37j + 2x° yk find:
a- Vo b-V.A c- Vx A d- div (¢A) e- curl (pA)

Solution:

I B 3 :}e,b &b b
k— —k
c ¢ )Qb ax av gz
= 2xyz i+ xz;-""’:.i + 3,\42}.' k

a
m;—(\t i+ —(A vz )]—i— (\)1)h

. Y 3 - 3
(B) VA= (if(—¥+_i—+k)—) xzi — 7+ 2xhK)
[N g LI

= x( ‘)+——(v—¥ )+—(?_\ Fl=1z—=2p

'} J} 8 b I
() VxA= (;i\-+ it k:) x (xzi — 7 + 2x71k)

a ay o

i o k
= |dfdx d/ty §ioz

Xz ~y2 2 \”11

(ﬂ_t’(? )__{_—; ))3+(9:(}“) f}x(h ”‘))1+(3,x'(' ) 3}'(1—))1\

u2v3+(\ -4u)|
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() divi{pA)=V. (qf;fk)m‘? (\ yetio *j-iw;\ 12 2K)

ENLIN ~)+ ) (26
ax

= 3x* _v:' — 3y 1 = %6\4 222

() curl {pA) = Vx {¢pA) =V x (xsjf:’ii - _.\fzy‘3 ::3j + 231:4‘?2 =k)

/ i i k
= yox v
4 233 a4

llm —XTpT _‘«IL

= (4x" 1_ -3 ; z )l + (437 LH 3_\_3_1!2:3)3. — (l:r_;}r3 + ¥ YK
Example 19: Prove V- (¢A) ={Vo)- A+ HV - A).

Solution: . (gA) = V- (p1i + 6hoi + 03K)
i} a0 i .
=2 GA) T (B + Ay
0 ok iAd a4y dAdy
::,}—Gbgii—l-ﬂh—i— As +¢({ L F S )
ax ay dy iz

i@, - a } '
- (%ﬁ ﬁ?, +‘j_“‘""k) Ay Azj + A3K)

a il i . .
—{—Q’(—ﬂ +—"—}+9—k) (Al + Aaj + A:zk)

C = (V) A+ (V- A)

Example 20: prove div curl A =0

Solution:

i i i k |
|

aidx Moy a0z

A 3 ?JA: . a9 | iA T\, A A i |
V- = —— — = .
[( P )' + ( iz ax )3 + ( ax v )k
& 04y 84y d fo4;  ads d (fddy  0A,
=il il e iveul Bl B slon Eeruunio
ax \ dy dz J ooy \ iz ax dz \ dx ay

FAy, &y Fdy FAy FA, TA

diveumrl A=V (VxA)=V

Il

dxdy  dxdr  dydz drax prax ozoy
= ()
39




Problems of chapter one

1-  Assume that two vectors A and B are known. Let C be an unknown vector such that
A . C=yis a known quantity and A x C = B. Find C in terms of A, B, 4, and the

magnitude of A.

Solution: S oy- s o B
B:wk4qu=denﬁ AC}mCﬂnGmﬁ
A
AC = ACcosf = u ~C, =Ceosf=2
= BxA ' A
e
L L e &)
A j’ A AB \ 4

ngi
|

%,ﬁ+?§xgi

H

i,

2- Find a unit vector normal to the plane containing the two vectors
A=27+j-F and B=i-j+2k

Solution:

i-7 &
oD 2% ap - / el v
AxB=2 1 -lf=1-5-3F 4 'jqxg’: (5 (-3 = 35
1 -1 2 "
. AxB . the vector
no= o {umit vecior = ———
‘,4 x B s magnitide

3- A racing car moves on a circle of constant radiﬁs b. If the speed of the car
varies with time ¢ according to the equation v = ¢ where ¢ is a positive constant,
show that the angle between the velocity vector and the acceleration vector is

45° at time t = /b /c (Hint: At this time the tangential and normal components

of the acceleration are equal in magnitude.)
Solution: vV =VT = CItT

- . p2 c2t?
a=v‘r+?n=CT+

n
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v=#Jbc and a=ct+cn

STe

at 7/ =
cos&-—‘—“&-— c bc___ ]
va  JbeJ2¢? J2

4- A small ball is fastened to a long rubber band and twirled around in such away
that the ball moves in an elliptical path given by the equation:

r(£) = ib cos wt + j2b sin 0t

where b and ® are constants. Find the speed of the ball as a function of 7. In
particular, find v at t =0 and at t = © /20, at which times the ball is, respectively, at
its minimum and maximum distances from the origin.

Solution: 5(1) = —ibewsin (o1 )+ j2bwcos (o)
! 1
l\‘zl = (bz{r}z sin’ ot + 46w’ cos’ wr)3 = bw(i +3cos’ 501)3

a(1)=~ibw’ coswi - j2bo’* sinwt
i
|| = bew® (1 + 3sin” @i )?

at i=0, [f|=2b0: at 1=-—. [§|=he
2w
5- A bee goes out from its hive in a spiral path given in plane polar coordinates by

r= be", 0=ct where b, k, and ¢ are positive constants. Show that the angle
between the velocity vector and the acceleration vector remains constant as the

bee moves outward. (Hint: Find v. a/va)
Solution: ¥ =ré, +r0é, = bke"é, +bee"'é,
i =(F~r0?)é, +(rf+270), = b(k* —c*)e"é, + 2bckee,
bk (kz _‘cz )ew + b ket

V-a
cos¢ = - = ” : T
“he" (kz +¢? )5 he* [(kz ch)z +;4k(:21'c2:|2
k(k?+c° :
cos¢ = ( ]+c) = u — . a constant
(k3+c2)5(k2+c3) (k2+c3)5
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6- An ant crawls on the surface of a ball of radius b in such a manner that the ant's
motion is given in spherical coordinates by the equations

r=b p=wt = —725[1 + %cos(m}t)]

Find the speed of the ant as a function of the lime t. What sort of path is represented
by the above equations?
Solution:

V=¢r+ergsind+é,rd

o] 1 : .
¥ = ¢,bewsin < —g[l+—icos(4mt)J} —egbg—wsm(:lmf)

p—

v = ébw cos %cos(4m[)}§éobw%sin(4(:):)

2 2
|x‘5| = bw [0052 (% cos 4(01) + % sin’ 4(91]

i "}/J"’,};;
Path is sinusoidal oscillation about the equator.

7- Prove that v. a = vo and, hence, that for a moving particle v and a are
perpendicular to each other if the speed v is constant. (Hint: Differentiate both sides
of the equation v * v = v* with respect to t. Note, ¥ is not the same as |a| I It is the
magnitude of the acceleration of the partied along its instantaneous direction of

motion.)

Solution:




8- Show that the tangential component of The acceleration of a moving particle is

given by the expression: ven
a, =—
v

s (v-a)? 1/2
and the normal component is therefore g, = (42 - af) - [ 2 .g ]

solution:

v=vf and a=a.rr+an
_ v.a
v-a=va,. S0 a, =——

L!
.

)2

9- A wheel of radius 5 rolls along the ground with constant forward acceleration
a,. Show that, at any given instant, the magnitude of the acceleration of any point
on the wheel is (a2 + v*/b?)'/? relative to the center of the wheel and is also
a,[2 + 2cos6+ v*/aZb? — (2v?%/a,b)sind]*/? relative to the ground. Here v
is the instantaneous forward speed, and © defines the location of the point on the
wheel, measured forward from the highest point. Which point has the greatest
acceleration relative to the ground?

RN 2
o’ =al+a;. so a,=(a’-a

LB ¥}

Solution

7, =ibsind+ jbcosd
V., = ibO cosd — jhOsin 0 - P
a., =fl)(9c030—9:si:1 ())--}b(ésin(?%-()! cosﬁ) h v,

. )

at the point 6 = 5 V= -V

So, [p,|=b0=v

Vn‘f
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"
1—'2 v

A p=at+—n

Now, a4, ,=v T+

3
N IR
|a“,,|-~ a; +b2

Vo=¥+V , and d,=d, +a.,

[N

2

-

- a v [ a v
dp, =i|a +b| —cos@——sind | |- jb| —sinf +—cos
ap a. (b P ] J [h sin e cosﬁ}

|-

4 2
|&P|:an[2+2cos()+ :2—21 siné)J
{O

b  ab
dp, 1s a maximum at @ =0 i.c.. at the top of the wheel.
: 2v°
-2sin@ ———cosf =0
a

10- Use vector algebra to derive the following trigonometric identities

(a) cos(8— ¢) = cosBcosg+ sinf sing
(b) sin{(@— ¢) = sinB cos¢ — cosP sing

Solution:
(a) a=::cosc9+j'sin0
2 b=i;cos¢)+jsinqp
g P a-b =cos(6’~ga):(fcos€+}sin 9)-(fcos¢+jsin¢7]
\ @

cos(0-¢}=cosfcosg+sindsing

(b) bxa =I.£'lsin (0—90) =|(fcos()+_}sin6)x(fcos¢+}sin go)l
sin(#-g)=sinfcos@-cosPsing
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Problems (homework)

Consider a cube whose edges are each of unit length. One corner coincides with the origin
of an xyz Cartesian coordinate system. Three of the cube’s edges extend from the
origin along the positive direction of each coordinate axis. Find the vector that begins at the
origin and extends

(a) along a major diagonal of the cube;

(b) along the diagonal of the lower face of the cube.

(¢} Calling these vectors Aand B, find C= A x B.

(d) Find the angle between A and B.

Given the time-varying vector
A=iat +jBt* + kyt’

where @, B, and ¥ are constants, find the first and second time derivatives dA/dt and
d*A/dt?,

For what value (or values) of g is the vector A = ig + 3j + k perpendicular to the vector B =
iq — gj + 2k?

3- A buzzing fly moves in a helical path given by the equation

r(t) =ib sinwt + jb cos @t + ket’

Show that the magnitude of the acceleration of the fly is constant, provided b, @, and ¢ are
constant.

4- A particle moves in a helical path such that its position in cylindrical coordinate

5-

given by
R=h b=ct =t

Find the speed and the magnitude of the acceleration as a function of .

Express the vector 2i + 3j — k in the primed triad I'{’k’ in which the x’-axes are rotated
about the z-axis (which coincides with the z’-axis) through an angle of 30°.
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Analytical Mechanics

Chapter One
1-1: Scalar and vectors:

A scalar is any positive or negative physical quantity that can be completely
specified by its magnitude. such as mass, length, density, volume and
temperature.

A vector is any physical quantity that requires both a magnitude and
direction for its complete description. A vector is shown graphically by an
arrow. The length of the arrow represents the magnitude of the vector, and a
fixed axis defines the direction of its line of action .The head of the arrow
indicates the sense of direction of the vector (Fig 1- 1).

Fig. (1-1)

? Direction
i

For handwritten work, it is often convenient to denote a vector quantity by

simply drawing an arrow on top it A, (K) In print, vector quantities are
represented by bold face letters such as A, and its magnitude of the vector is
italicized, A.

1-2:Geometric Properties :

1. Two vectors A and B are equal if they have the same magnitude and direction
regardless of their initial points. Thus A = B.

2. A vector having direction opposite to that of vector A but with the same
magnitude is denoted by -A .

3. The sum or resultant of vectors A and B of Fig. 1-2(a) below is a vector C
formed by placing the initial point of B on the terminal point of A and joining
the initial point of A to the terminal point of B [see Fig. 1-2(b) below].

1



The sum C is written C = A + B. The definition here is equivalent to the
parallelogram law for vector addition as indicated in Fig.1-2(c) below.

C=A+B \ -
~
B P

(a) (b) (c)

Fig.(1-2)

B
N B N -"'--.._‘__“.
C=.
>

4. The difference of vectors A and B, represented by A - B, is that vector C which
added to B gives A. Equivalently, A - B may be defined as A + (-B). If A =B,
then A - B is defined as the null or zero vector and is represented by the
symbol 0. This has a magnitude of zero but its direction is not defined.

5. Multiplication of a vector A by a scalar m produces a vector mA with
magnitude |m| times the magnitude of A and direction the same as or
opposite to that of A according as m is positive or negative. If m =0, mA =0,
the null vector.

1-3: Algebraic Properties of Vectors:

The following algebraic properties are consequences of the geometric
definition of a vector. If A, B and C are vectors, and m and n are scalars, then:

1. A+B=B+A Commutative Law for Addition
2.A+(B+C)=(A+B)+C Associative Law for Addition

3. m(nA)= (mn)A = n(mA) Associative Law for Multiplication

4. (m+nA=mA +nA Distributive Law
5.m(A+B)=mA+mB Distributive Law
6. A+0=A 7. A+(-A)=0

Note that in these laws only multiplication of a vector by one or more scalars
Is defined.



1-4: Unit Vectors:

Unit vectors are vectors having unit length. If A is any vector with length
A > 0, then A/A is a unit vector, denoted by a, having the same direction as A.

Then A = Aa. The rectangular unit vectors i, j, and k are unit vectors having
the direction of the positive X, y, and z axes of a rectangular coordinate system
[see Fig. 1-3].

Fig.(1-3)

1-5 Components of A Vectors:

Any vector A in 3 dimensions can be represented with initial point at the
origin O of a rectangular coordinate system [see Fig. 1-4]. Let (A1;A;;Az) be the
rectangular coordinates of the terminal point of vector A with initial point at O.
The vectors Aqi;A,j; and Azk are called the rectangular component vectors, or
simply component vectors, of A in the X, y; and z directions respectively. The
sum or resultant of A4i;A,j; and Azk is the vector A, so that we can write:

A:A1i+A2j +A3k

The magnitude of A is:

A=Al = 4+ 43+ 43

In particular, the position vector or radius vector r from O to the point (X; y; z) is
written:

r=xi+yj+zk

and has magnitude:



1-6: Dot OR Scalar Product:

The dot or scalar product of two vectors A and B, denoted by A.B (read A dot
B) is defined as the product of the magnitudes of A and B and the of the angle
between them(projection of A on B). In symbols,

A.B=ABcos0O; 0<0<m

Assuming that neither A nor B is the zero vector, an immediate consequence
of the definition is that A . B =0 if and only if A and B are perpendicular. Note
that A . B is a scalar and not a vector. The following laws are valid:

1.A.B=B.A Commutative Law for Dot Products
2.A.B+C)=A.B+A.C Distributive Law
3. mA.B)=(mA).B=A.(mB)=(A.B)m, wheremisa scalar.
4.i.i=j.j=k.k=1,; i.j=j.k=k.i=0
5. 1f A=Aj + Ay + Ak and B = B4l + By] + B3k, then

A.B=AB;+AB, +As;B;
In particular, we can write:

A.B=AB,+AB,+AB,

6. The square of the magnitude of a vector A is given by the dot product of A
with itself,

A’=|A|2=AA

As an example of the dot product, suppose that
an object under the action of a constant force
undergoes a linear displacement As, (as shown in
Figure 1-4) .By definition, the work AW done by
the force is given by the product of the component
of the force F in the direction of As, multiplied by
the magnitude As of the displacement; that is,




AW=(FcosB)As

where 0 is the angle between F and As. But the expression on the right is just
the dot product of F and As, that is,

AW=F.As
1-7: CROSS OR VECTOR PRODUCT:

The cross or vector product of A and B is a vector C = A x B (read A cross
B). The magnitude of A x B is defined as the product of the magnitudes of A and
B and the sine of the angle between them. The direction of the vector C=A x B is
perpendicular to the plane of A and B and such that A, B, and C form a right-
handed system. In symbols,

A x B = AB sin 0u; 0<6<~7x

where u is a unit vector indicating the direction of A x B. IfA =B or if A is parallel
to B, thensin®=0and A x B =0.

The following laws are valid:
1. AxB=-BxA (Commutative Law for Cross Products Fails)
2.AXx(B+C)=AxB+AxC Distributive Law
3mMAxXxB)=(mMA)xB=Ax(mB)=(AxB)m, wheremisascalar.
Also the following consequences of the definition are important:
4.ixi=)jxj=kxk=0,
Ixj=K=-]xi; jxk=i=-kxj;kxi=j=-ixk

This cyclic nature of the cross product can be emphasized by
diagramming the multiplication table as shown in Figure

5. |A X B |=the area of a parallelogram with sides A and B. i

6. If A x B =0 and neither A nor B is a null vector, then A and B are parallel.



7.1f A=A + Ajj + Ak and B = Byi + Byj + B/K, then

i i k
A x B = |Ax Ay A,
B, B, B,
14,4, |AA, AL A,
A><B—1ByBZ +] B_B, + B, B,

The cross product expressed in i, j ,k form is:

AxB=i(A,B,~A,B) +j(A,B,~A,B) +k(A,B,~ A,B,)

Let us calculate the magnitude of the cross product. We have

|AXBf'=(A,B,— A,B)" +(A,B,~A,B,)' +(A,B,— A B,)
This can be reduced to:

|AxBI® =(A2+A% + A2)(B2 +B] +B})—(A,B, + A,B, +A,B,)’

from the definition of the dot product, the above equation may be written in the

form
JAXBF =A%B%- (A . B)

Taking the square root of both sides of Equation above we can express the
magnitude of the cross product as

|A x B|=AB(l —cos*0)"* = AB sin @
where 6 is the angle between A and B.
physical example of the cross product is the rotational moment (torque)
T=rxF

Let a force F act at a point P(X, vy, z), as shown in Figure 1-5, and let the
vector OP be designated by r; that is,



OP=r=ix+jy+kz

Figure 1-5: Illustration of the moment of

a force about a point 0.

The moment N of force, or the torque N, about a given point 0 is defined as
the cross product
N=rxF

Thus, the moment of a force about a point is a having a magnitude and a
direction. If a single force is applied at a point P on a body that is initially at
rest and is free to turn about a fixed point 0 as a pivot->, then the body tends
to rotate. The axis of this rotation is perpendicular to the force F, and it is also
perpendicular to the line OP; therefore, the direction of the torque vector N is
along the axis of rotation. The magnitude of the torque is given by:

IN|=|r x F|=rFsin0
in which 0 is the angle between r and F. Thus, |[N| can be regarded as the
product of the magnitude of the force and the quantity r sin 8, which is just
the perpendicular distance from the line of action of the force to the point 0.

1-8: Representation of a given vector as the product of a scalar and a
single unit vector:

Consider the equation:

A = 1A+ JA + KA,

Multiply and divide on the right by the magnitude of A

A, A, A,
A=Ali—=+j—1L+k
A A A

Now A,/A = cosa, Ay/A = cosp, and = A,/A cos y are the direction cosines of the
vector A, and a, B, and y are the direction angles. Thus, we can write are the
direction cosines of vector A, and are the direction angles.



Thus we can write
A =A(i cosa +j cos B + k cos y) =A(cosa ,cos 3, cos )
or
A=nA

where n is a unit vector whose components are cosa. ,cos 3, and cos y. Consider any

other vector B. Clearly, the projection of B on A is just
B-A

Bcos@=——=B'n
A

where 0 is the angle between A and B.

Example 1:
1- Find the angle between the vectors

2- Find the vector product of the vectors

A=2i+3j-k  and B=-i+]+2k
solution:

1- AB=AB +AB +AB =2x(-1)+3x1+(-1)x2=-1

X

A= \Z\\ = 22 +32 +(-1)* = 3.74 units

B=[B| = (-1)? +12+ 22 = 245 units

A.B=ABcosfd = 0=cosl(£)
and since AB

0=cos™t ( ———— ) =cos™ (-0.109) = 96.3°
3.74x2.45



A

I ] K
AxB=|2 :Ja ~1=1(6+)-j(4-1)+k(2+3)=7i-3]+5K
-1 1 2
Example 2:
force #1 i+ J was applied on a body at a point p; such that
0p, =f, =2 21+ J and a second force : :j_lz was applied at a point

0p, = F2=i+j+k. Find: (a) the total moment N (b) the magnitude of

(c) the direction cosines of N,

solution:

The total moment is

—_

N=N,+N,=Kk + (-2i+]+k) = -2i + ] +2k
(b) N=4+1+4 =3
(c)

W |-

COS —&
! N

cosa—& 2 cos f=—
N 3 )



1-9:Triple Products:
The expression
A.(BxQC)

is called the scalar triple product of A, B, and C. It is a scalar because it is the
dot product of two vectors. Referring to the determinant expressions for the cross
product, we see that the scalar triple product may be written:

Ay Ay A,
A.(BxC) =|[Bx By B,
Cx C, G,

Because the exchange of the terms of two rows or of two columns of a
determinant changes its sign but not its absolute value, we can derive the
following useful equation:

1- (A.B)C #A(B . C) in general

2-A . (BxC)=B.(CxA)=C.(Ax B) =volume of a parallelepiped having A, B,
and C as edges, or the negative of this volume according as A, B, and C do or do
not form a right handed system. Thus, the dot and the cross may be interchanged
in the scalar triple product.

The expression
Ax (B x C)

is called the vector triple product. The following equation holds for the vector
triple product:

1- Ax (B x C)# (AxB) x C  (Associative Law for Cross Products Fails)
2- Ax(BxC)=(A.C)B-(A.B)C
Ax(BxC)=(A.C)B-(B.C) A

Vector triple products are particularly useful in the study of rotating
coordinate systems and rotations of rigid bodies.

10



Example 3:
Given the three vectors A =1, B =i—j, and C =k, find

1- A. (B x C)
2- Ax (B x C)
Solution:
1- 1 00
A-(BxC)=|1 -1 0|=1(-1+0)=-1
0 0 1
2- Ax(BxC)=B(A.C)- CA-B)=(i—j0-k(1-0)=-k

1-10:Change of Coordinate System :The Transformation Matrix:

The rotation of a Cartesian coordinate system is an example of an orthogonal
transformation. Consider the vector A expressed relative to
the triad ijk:

A=iA +jA,+kA,

Relative to a new triad i'j'k" having a different orientation from that of ijk, the
same vector A is expressed as

A=VA, +jA, +KA,

Now the dot product A. i' is just A, that is, the projection of A on the unit
vector i'. Thus, we may write

Ai' =314, +(j+i)A +(k-1)A,
Af=@-IA +(j- A, +k- A,
Ak =(@-K)A, +(j-k)A, +(k-k)A,

il

A,
A,
A,

11



The scalar products (i . i*), (i . J'), and so on are called the coefficients of
transformation. They are equal to the direction cosines of the axes of the primed
coordinate system relative to the unprimed system. The unprimed components are
similarly expressed as

A, =Ai=( DA, +( DA, +(K DA,
A =A-j=G DA +G DA, +(K A,
A, =Ak=G" WA, +( WA, +K kA,

The equations of transformation are conveniently expressed in matrix notation.
Thus,

A) (i jir ki)A
i'i o kej) A,
j.

x

5 e

' k)| A,

The 3-by-3 matrix in Equation above is called the transformation matrix.

Example 4:

Express the vector A = 3i + 2j + k in terms of the triad i'J'Kk", where the
X'y'—axes are rotated 45° around the z-axis, with the z- and z'-axes coinciding, as
shown in Figure. Referring to the figure, we have for the coefficients of
transformation i . i* = cos 45° and so on,

we have from the figure: 27
i =142 JU=1n2 k-i'=0

ij=-1"2  jj=1A2 k-j=0
i-k"=0 jk'=0 k-k'=1 0 =

45°

12



Al i j0 k(A
SIS A SN
ATk KKK LA
11,
{/&' ﬁl Jf A
ME RN
A, 0o o0 1|\A
11
A V2 2 3
1 V2 2
A, o o 1|\
These give:
3 2 5 -3 2 -1
Ax.=—2+—2=ﬁ A”'=T§+E=~/_§ A, =

so that, in the primed system, the vector A is given by

A Bp_ L

J2o 2

13



Example 5:

Find the transformation matrix for a rotation of the primed coordinate
system through an angle ¢ about the z-axis. We have

i.i'=j.j =cos¢

joi'=-i.j =sin¢ ,;”’7'
k-kK=1 9 - -
9
and all other dot products are zero; hence, the x ¢

transformation matrix is:

cos¢ sing O
—sing cos¢ O
0 0 1

the transformation matrix for a rotation about a different coordinate axis-say,
the y-axis through an angle (6) given by the matrix

cos@ 0 —sinf
0 1 0
sin@ 0 cos@

Consequently, the matrix for the combination of two rotations, the first being
about the z-axis (angle ¢) and the second being about the new y' -axis (angle (0),
IS given by the matrix product

cos@ 0 —sin@)( cos¢ sing O cosB@ cos¢ cosf@singg —sinf
0 1 0 —sing cos¢ O|=| -sing cos @ 0

sin@ 0 cos@ 0 0 1 sin@cos¢ sin@sing cos6

Now matrix multiplication is, in general, noncommutative; therefore, we
might expect that the result would be different if the order of the rotations,
and, therefore, the order of the matrix multiplication, were reversed.

14



Example6:

Express the vector i+] in terms of the triad i j k where the x' z' axes are
rotated 60 degree around the y axis, and the y' axes coinciding.

Solution:

From the figure . we can see that

i =k-k =cos60° _%

k' =sin60° =

—y

the rest are zero

Therefore the transformation matrix and the equation of transformation

becomes:
1 3
) | 0 -2
’ 2 2
A}" = 0 1 0 1
r
2 2
— 1~ . 3 A
A=—i +j +—k
2 2
T . l{ﬂ ,{n
cod — + X| = —sinx tan — + x| = —cot x sin— + x| = cos x
/ |{ﬂ: sili'n-%—x) = —sinx
T * C -_— = 2 = . P ‘
COS{E - x| = sinx ta 2 x}_‘ cot x 5“{“‘ x| = sinx
COS{.J‘E N X) C cos x tan[:n + xJ = tanx 5“{3_; N ,“ C o cos x
tan[n - x] = — tan x - -
co 3z + x sin x ; )
L2 tan%+x = — cot x
co 3 _ x‘ = —sinx ][3?1: ‘ |COS2 X +sin x = l|
2 tan — — x| = cot x

q q - 2 ]
‘cos{Ecx )=2cos a —l| ‘cos[hx )=cos o —sin’ (1| |cos(2cx): 1—2sin° Ut|

‘51'.11{(1 +B )= sinc cosp + cosasin |3| ‘51'.11{(1 —B )= sinc cosp —cosasin [5|

lcos(a —B)=cosacos f +sinasinP| |cos(a +p)=cosacosp —sinasinf|

15



Solved Problems (page 44):
1.1: Given the two vectors A =i +j and B =j + kK, find the following:

(a) A+B and |A + BJ (b) 3A-2B (c) A. B (d) AxB and |A + B|

Solution:
(@) A+B=(i+N+(j+k)=i+2j+k

1
|4+ B|=(1+4+1)? = V6
(b) 34-2B=3(+])-2(j+k)=3i + j—2k

(€) A-B=()0)+(I)H)+(0)1)=1

=i(1=0)+ JO-1+k(1-0) =i~ j+ &

J
(d) AxB 1
1

—_— o

i
=1
0
|Ax B|=(1+1+1)" =3
1.2 Given the three vectors A = 2i +j, B =1 + k, and C = 4j, find the following:
@A (B+C)and (A+B).C (b) A.(BxC)and (AxB).C
(c) Ax(BxC) and (AxB)xC
Solution: A-(B+C)=(2i+])-(I+4j+ k)= @)D+ ()X +(0)) =6

(A+8)-C= (37 + j+K)-4] = 3XO)+ () + (1)(0) = 1




1.3: Find the angle between the vectors A = ai + 2aj and B = ai + 2aj + 3ak. (Note:
These two vectors define a face diagonal and a body diagonal of a rectangular
block of sides a, 2a, and 3a.)

Solution:

A-B _(a)(@)+(2a)2a)+(0)3a) _  5a°

NEEN T IENCN T
& =cos™ 2 ~53°
V12

1.4 Prove that the projection of A on B is equal to A .b, where b is a unit vector in
the direction of B.

cosf =

Solution:

Through the initial and terminal points of A pass planes
perpendicular to B at G and H respectively, as in the e "
adjacent Figure: then

Projection of AonB=GH =EF =Acos 6 =A .b

1.5 Find the volume of a parallelepiped with sides A = 3i — j, B =j 4+ 2k, C =i + 5j + 4k.

Solution:

3 —1 0
volume of parallelepiped = |A-(Bx C)| =10 1
Il 5 4

[

— | — 20| = 20.
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1.6 1rA= i+j,.B=2—3j+k, C=4j—3k. find (a) (AxB)xC, (b) Ax(BxC).

Solution:
i L‘ i ik

(@ AxB=|/1 1 0l=i—j—5k Then (AxB)xC=|1 —1 —5|=23i+3j+4k
2 -3 | 0 -3
i i k| i k|

) BxC=|2 =3 1 |=5i+6j4+8k Then Ax(BxC)=|1 1 0|=8i-8j+k
0 4 =3 5 6 8l

It can be proved that, in general, (A x B) x C# A = (B x ().

Problems (homework)
Answer to the following problems.
1- If A=5i—j-2k and B =2i+ 3j—k, find
(@) AXBand BXA (b) |A X B|
(c)sin ¢ and ¢ where ¢ isthe smaller angle between A and B.
(d) (AXB).B, and (AXB).A.
2- IfTA=3i—-2j+4k,B=2i—4j+5k,and C =i+ j— 2k, find
(@) AX(BXC) (b) (AXB)XC
3- Evaluate
(@) 2i X (3j—4k) (b) (i +2j) Xk (c) (2i —4j) X (i + k)

4- prove that the transformation matrix for a rotation about y-axis through an
angle (0) is given by the matrix :

cos@ 0 —sinf
0 1 0
sin@ 0 cos@
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Analytical Mechanics

Chapter One
1-1: Scalar and vectors:

A scalar is any positive or negative physical quantity that can be completely
specified by its magnitude. such as mass, length, density, volume and
temperature.

A vector is any physical quantity that requires both a magnitude and
direction for its complete description. A vector is shown graphically by an
arrow. The length of the arrow represents the magnitude of the vector, and a
fixed axis defines the direction of its line of action .The head of the arrow
indicates the sense of direction of the vector (Fig 1- 1).

Fig. (1-1)

? Direction
i

For handwritten work, it is often convenient to denote a vector quantity by

simply drawing an arrow on top it A, (K) In print, vector quantities are
represented by bold face letters such as A, and its magnitude of the vector is
italicized, A.

1-2:Geometric Properties :

1. Two vectors A and B are equal if they have the same magnitude and direction
regardless of their initial points. Thus A = B.

2. A vector having direction opposite to that of vector A but with the same
magnitude is denoted by -A .

3. The sum or resultant of vectors A and B of Fig. 1-2(a) below is a vector C
formed by placing the initial point of B on the terminal point of A and joining
the initial point of A to the terminal point of B [see Fig. 1-2(b) below].

1



The sum C is written C = A + B. The definition here is equivalent to the
parallelogram law for vector addition as indicated in Fig.1-2(c) below.

C=A+B \ -
~
B P

(a) (b) (c)

Fig.(1-2)

B
N B N -"'--.._‘__“.
C=.
>

4. The difference of vectors A and B, represented by A - B, is that vector C which
added to B gives A. Equivalently, A - B may be defined as A + (-B). If A =B,
then A - B is defined as the null or zero vector and is represented by the
symbol 0. This has a magnitude of zero but its direction is not defined.

5. Multiplication of a vector A by a scalar m produces a vector mA with
magnitude |m| times the magnitude of A and direction the same as or
opposite to that of A according as m is positive or negative. If m =0, mA =0,
the null vector.

1-3: Algebraic Properties of Vectors:

The following algebraic properties are consequences of the geometric
definition of a vector. If A, B and C are vectors, and m and n are scalars, then:

1. A+B=B+A Commutative Law for Addition
2.A+(B+C)=(A+B)+C Associative Law for Addition

3. m(nA)= (mn)A = n(mA) Associative Law for Multiplication

4. (m+nA=mA +nA Distributive Law
5.m(A+B)=mA+mB Distributive Law
6. A+0=A 7. A+(-A)=0

Note that in these laws only multiplication of a vector by one or more scalars
Is defined.



1-4: Unit Vectors:

Unit vectors are vectors having unit length. If A is any vector with length
A > 0, then A/A is a unit vector, denoted by a, having the same direction as A.

Then A = Aa. The rectangular unit vectors i, j, and k are unit vectors having
the direction of the positive X, y, and z axes of a rectangular coordinate system
[see Fig. 1-3].

Fig.(1-3)

1-5 Components of A Vectors:

Any vector A in 3 dimensions can be represented with initial point at the
origin O of a rectangular coordinate system [see Fig. 1-4]. Let (A1;A;;Az) be the
rectangular coordinates of the terminal point of vector A with initial point at O.
The vectors Aqi;A,j; and Azk are called the rectangular component vectors, or
simply component vectors, of A in the X, y; and z directions respectively. The
sum or resultant of A4i;A,j; and Azk is the vector A, so that we can write:

A:A1i+A2j +A3k

The magnitude of A is:

A=Al = 4+ 43+ 43

In particular, the position vector or radius vector r from O to the point (X; y; z) is
written:

r=xi+yj+zk

and has magnitude:



1-6: Dot OR Scalar Product:

The dot or scalar product of two vectors A and B, denoted by A.B (read A dot
B) is defined as the product of the magnitudes of A and B and the of the angle
between them(projection of A on B). In symbols,

A.B=ABcos0O; 0<0<m

Assuming that neither A nor B is the zero vector, an immediate consequence
of the definition is that A . B =0 if and only if A and B are perpendicular. Note
that A . B is a scalar and not a vector. The following laws are valid:

1.A.B=B.A Commutative Law for Dot Products
2.A.B+C)=A.B+A.C Distributive Law
3. mA.B)=(mA).B=A.(mB)=(A.B)m, wheremisa scalar.
4.i.i=j.j=k.k=1,; i.j=j.k=k.i=0
5. 1f A=Aj + Ay + Ak and B = B4l + By] + B3k, then

A.B=AB;+AB, +As;B;
In particular, we can write:

A.B=AB,+AB,+AB,

6. The square of the magnitude of a vector A is given by the dot product of A
with itself,

A’=|A|2=AA

As an example of the dot product, suppose that
an object under the action of a constant force
undergoes a linear displacement As, (as shown in
Figure 1-4) .By definition, the work AW done by
the force is given by the product of the component
of the force F in the direction of As, multiplied by
the magnitude As of the displacement; that is,




AW=(FcosB)As

where 0 is the angle between F and As. But the expression on the right is just
the dot product of F and As, that is,

AW=F.As
1-7: CROSS OR VECTOR PRODUCT:

The cross or vector product of A and B is a vector C = A x B (read A cross
B). The magnitude of A x B is defined as the product of the magnitudes of A and
B and the sine of the angle between them. The direction of the vector C=A x B is
perpendicular to the plane of A and B and such that A, B, and C form a right-
handed system. In symbols,

A x B = AB sin 0u; 0<6<~7x

where u is a unit vector indicating the direction of A x B. IfA =B or if A is parallel
to B, thensin®=0and A x B =0.

The following laws are valid:
1. AxB=-BxA (Commutative Law for Cross Products Fails)
2.AXx(B+C)=AxB+AxC Distributive Law
3mMAxXxB)=(mMA)xB=Ax(mB)=(AxB)m, wheremisascalar.
Also the following consequences of the definition are important:
4.ixi=)jxj=kxk=0,
Ixj=K=-]xi; jxk=i=-kxj;kxi=j=-ixk

This cyclic nature of the cross product can be emphasized by
diagramming the multiplication table as shown in Figure

5. |A X B |=the area of a parallelogram with sides A and B. i

6. If A x B =0 and neither A nor B is a null vector, then A and B are parallel.



7.1f A=A + Ajj + Ak and B = Byi + Byj + B/K, then

i i k
A x B = |Ax Ay A,
B, B, B,
14,4, |AA, AL A,
A><B—1ByBZ +] B_B, + B, B,

The cross product expressed in i, j ,k form is:

AxB=i(A,B,~A,B) +j(A,B,~A,B) +k(A,B,~ A,B,)

Let us calculate the magnitude of the cross product. We have

|AXBf'=(A,B,— A,B)" +(A,B,~A,B,)' +(A,B,— A B,)
This can be reduced to:

|AxBI® =(A2+A% + A2)(B2 +B] +B})—(A,B, + A,B, +A,B,)’

from the definition of the dot product, the above equation may be written in the

form
JAXBF =A%B%- (A . B)

Taking the square root of both sides of Equation above we can express the
magnitude of the cross product as

|A x B|=AB(l —cos*0)"* = AB sin @
where 6 is the angle between A and B.
physical example of the cross product is the rotational moment (torque)
T=rxF

Let a force F act at a point P(X, vy, z), as shown in Figure 1-5, and let the
vector OP be designated by r; that is,



OP=r=ix+jy+kz

Figure 1-5: Illustration of the moment of

a force about a point 0.

The moment N of force, or the torque N, about a given point 0 is defined as
the cross product
N=rxF

Thus, the moment of a force about a point is a having a magnitude and a
direction. If a single force is applied at a point P on a body that is initially at
rest and is free to turn about a fixed point 0 as a pivot->, then the body tends
to rotate. The axis of this rotation is perpendicular to the force F, and it is also
perpendicular to the line OP; therefore, the direction of the torque vector N is
along the axis of rotation. The magnitude of the torque is given by:

IN|=|r x F|=rFsin0
in which 0 is the angle between r and F. Thus, |[N| can be regarded as the
product of the magnitude of the force and the quantity r sin 8, which is just
the perpendicular distance from the line of action of the force to the point 0.

1-8: Representation of a given vector as the product of a scalar and a
single unit vector:

Consider the equation:

A = 1A+ JA + KA,

Multiply and divide on the right by the magnitude of A

A, A, A,
A=Ali—=+j—1L+k
A A A

Now A,/A = cosa, Ay/A = cosp, and = A,/A cos y are the direction cosines of the
vector A, and a, B, and y are the direction angles. Thus, we can write are the
direction cosines of vector A, and are the direction angles.



Thus we can write
A =A(i cosa +j cos B + k cos y) =A(cosa ,cos 3, cos )
or
A=nA

where n is a unit vector whose components are cosa. ,cos 3, and cos y. Consider any

other vector B. Clearly, the projection of B on A is just
B-A

Bcos@=——=B'n
A

where 0 is the angle between A and B.

Example 1:
1- Find the angle between the vectors

2- Find the vector product of the vectors

A=2i+3j-k  and B=-i+]+2k
solution:

1- AB=AB +AB +AB =2x(-1)+3x1+(-1)x2=-1

X

A= \Z\\ = 22 +32 +(-1)* = 3.74 units

B=[B| = (-1)? +12+ 22 = 245 units

A.B=ABcosfd = 0=cosl(£)
and since AB

0=cos™t ( ———— ) =cos™ (-0.109) = 96.3°
3.74x2.45



A

I ] K
AxB=|2 :Ja ~1=1(6+)-j(4-1)+k(2+3)=7i-3]+5K
-1 1 2
Example 2:
force #1 i+ J was applied on a body at a point p; such that
0p, =f, =2 21+ J and a second force : :j_lz was applied at a point

0p, = F2=i+j+k. Find: (a) the total moment N (b) the magnitude of

(c) the direction cosines of N,

solution:

The total moment is

—_

N=N,+N,=Kk + (-2i+]+k) = -2i + ] +2k
(b) N=4+1+4 =3
(c)

W |-

COS —&
! N

cosa—& 2 cos f=—
N 3 )



1-9:Triple Products:
The expression
A.(BxQC)

is called the scalar triple product of A, B, and C. It is a scalar because it is the
dot product of two vectors. Referring to the determinant expressions for the cross
product, we see that the scalar triple product may be written:

Ay Ay A,
A.(BxC) =|[Bx By B,
Cx C, G,

Because the exchange of the terms of two rows or of two columns of a
determinant changes its sign but not its absolute value, we can derive the
following useful equation:

1- (A.B)C #A(B . C) in general

2-A . (BxC)=B.(CxA)=C.(Ax B) =volume of a parallelepiped having A, B,
and C as edges, or the negative of this volume according as A, B, and C do or do
not form a right handed system. Thus, the dot and the cross may be interchanged
in the scalar triple product.

The expression
Ax (B x C)

is called the vector triple product. The following equation holds for the vector
triple product:

1- Ax (B x C)# (AxB) x C  (Associative Law for Cross Products Fails)
2- Ax(BxC)=(A.C)B-(A.B)C
Ax(BxC)=(A.C)B-(B.C) A

Vector triple products are particularly useful in the study of rotating
coordinate systems and rotations of rigid bodies.

10



Example 3:
Given the three vectors A =1, B =i—j, and C =k, find

1- A. (B x C)
2- Ax (B x C)
Solution:
1- 1 00
A-(BxC)=|1 -1 0|=1(-1+0)=-1
0 0 1
2- Ax(BxC)=B(A.C)- CA-B)=(i—j0-k(1-0)=-k

1-10:Change of Coordinate System :The Transformation Matrix:

The rotation of a Cartesian coordinate system is an example of an orthogonal
transformation. Consider the vector A expressed relative to
the triad ijk:

A=iA +jA,+kA,

Relative to a new triad i'j'k" having a different orientation from that of ijk, the
same vector A is expressed as

A=VA, +jA, +KA,

Now the dot product A. i' is just A, that is, the projection of A on the unit
vector i'. Thus, we may write

Ai' =314, +(j+i)A +(k-1)A,
Af=@-IA +(j- A, +k- A,
Ak =(@-K)A, +(j-k)A, +(k-k)A,

il

A,
A,
A,

11



The scalar products (i . i*), (i . J'), and so on are called the coefficients of
transformation. They are equal to the direction cosines of the axes of the primed
coordinate system relative to the unprimed system. The unprimed components are
similarly expressed as

A, =Ai=( DA, +( DA, +(K DA,
A =A-j=G DA +G DA, +(K A,
A, =Ak=G" WA, +( WA, +K kA,

The equations of transformation are conveniently expressed in matrix notation.
Thus,

A) (i jir ki)A
i'i o kej) A,
j.

x

5 e

' k)| A,

The 3-by-3 matrix in Equation above is called the transformation matrix.

Example 4:

Express the vector A = 3i + 2j + k in terms of the triad i'J'Kk", where the
X'y'—axes are rotated 45° around the z-axis, with the z- and z'-axes coinciding, as
shown in Figure. Referring to the figure, we have for the coefficients of
transformation i . i* = cos 45° and so on,

we have from the figure: 27
i =142 JU=1n2 k-i'=0

ij=-1"2  jj=1A2 k-j=0
i-k"=0 jk'=0 k-k'=1 0 =

45°

12



Al i j0 k(A
SIS A SN
ATk KKK LA
11,
{/&' ﬁl Jf A
ME RN
A, 0o o0 1|\A
11
A V2 2 3
1 V2 2
A, o o 1|\
These give:
3 2 5 -3 2 -1
Ax.=—2+—2=ﬁ A”'=T§+E=~/_§ A, =

so that, in the primed system, the vector A is given by

A Bp_ L

J2o 2
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Example 5:

Find the transformation matrix for a rotation of the primed coordinate
system through an angle ¢ about the z-axis. We have

i.i'=j.j =cos¢

joi'=-i.j =sin¢ ,;”’7'
k-kK=1 9 - -
9
and all other dot products are zero; hence, the x ¢

transformation matrix is:

cos¢ sing O
—sing cos¢ O
0 0 1

the transformation matrix for a rotation about a different coordinate axis-say,
the y-axis through an angle (6) given by the matrix

cos@ 0 —sinf
0 1 0
sin@ 0 cos@

Consequently, the matrix for the combination of two rotations, the first being
about the z-axis (angle ¢) and the second being about the new y' -axis (angle (0),
IS given by the matrix product

cos@ 0 —sin@)( cos¢ sing O cosB@ cos¢ cosf@singg —sinf
0 1 0 —sing cos¢ O|=| -sing cos @ 0

sin@ 0 cos@ 0 0 1 sin@cos¢ sin@sing cos6

Now matrix multiplication is, in general, noncommutative; therefore, we
might expect that the result would be different if the order of the rotations,
and, therefore, the order of the matrix multiplication, were reversed.

14



Example6:

Express the vector i+] in terms of the triad i j k where the x' z' axes are
rotated 60 degree around the y axis, and the y' axes coinciding.

Solution:

From the figure . we can see that

i =k-k =cos60° _%

k' =sin60° =

—y

the rest are zero

Therefore the transformation matrix and the equation of transformation

becomes:
1 3
) | 0 -2
’ 2 2
A}" = 0 1 0 1
r
2 2
— 1~ . 3 A
A=—i +j +—k
2 2
T . l{ﬂ ,{n
cod — + X| = —sinx tan — + x| = —cot x sin— + x| = cos x
/ |{ﬂ: sili'n-%—x) = —sinx
T * C -_— = 2 = . P ‘
COS{E - x| = sinx ta 2 x}_‘ cot x 5“{“‘ x| = sinx
COS{.J‘E N X) C cos x tan[:n + xJ = tanx 5“{3_; N ,“ C o cos x
tan[n - x] = — tan x - -
co 3z + x sin x ; )
L2 tan%+x = — cot x
co 3 _ x‘ = —sinx ][3?1: ‘ |COS2 X +sin x = l|
2 tan — — x| = cot x

q q - 2 ]
‘cos{Ecx )=2cos a —l| ‘cos[hx )=cos o —sin’ (1| |cos(2cx): 1—2sin° Ut|

‘51'.11{(1 +B )= sinc cosp + cosasin |3| ‘51'.11{(1 —B )= sinc cosp —cosasin [5|

lcos(a —B)=cosacos f +sinasinP| |cos(a +p)=cosacosp —sinasinf|

15



Solved Problems (page 44):
1.1: Given the two vectors A =i +j and B =j + kK, find the following:

(a) A+B and |A + BJ (b) 3A-2B (c) A. B (d) AxB and |A + B|

Solution:
(@) A+B=(i+N+(j+k)=i+2j+k

1
|4+ B|=(1+4+1)? = V6
(b) 34-2B=3(+])-2(j+k)=3i + j—2k

(€) A-B=()0)+(I)H)+(0)1)=1

=i(1=0)+ JO-1+k(1-0) =i~ j+ &

J
(d) AxB 1
1

—_— o

i
=1
0
|Ax B|=(1+1+1)" =3
1.2 Given the three vectors A = 2i +j, B =1 + k, and C = 4j, find the following:
@A (B+C)and (A+B).C (b) A.(BxC)and (AxB).C
(c) Ax(BxC) and (AxB)xC
Solution: A-(B+C)=(2i+])-(I+4j+ k)= @)D+ ()X +(0)) =6

(A+8)-C= (37 + j+K)-4] = 3XO)+ () + (1)(0) = 1




1.3: Find the angle between the vectors A = ai + 2aj and B = ai + 2aj + 3ak. (Note:
These two vectors define a face diagonal and a body diagonal of a rectangular
block of sides a, 2a, and 3a.)

Solution:

A-B _(a)(@)+(2a)2a)+(0)3a) _  5a°

NEEN T IENCN T
& =cos™ 2 ~53°
V12

1.4 Prove that the projection of A on B is equal to A .b, where b is a unit vector in
the direction of B.

cosf =

Solution:

Through the initial and terminal points of A pass planes
perpendicular to B at G and H respectively, as in the e "
adjacent Figure: then

Projection of AonB=GH =EF =Acos 6 =A .b

1.5 Find the volume of a parallelepiped with sides A = 3i — j, B =j 4+ 2k, C =i + 5j + 4k.

Solution:

3 —1 0
volume of parallelepiped = |A-(Bx C)| =10 1
Il 5 4

[

— | — 20| = 20.
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1.6 1rA= i+j,.B=2—3j+k, C=4j—3k. find (a) (AxB)xC, (b) Ax(BxC).

Solution:
i L‘ i ik

(@ AxB=|/1 1 0l=i—j—5k Then (AxB)xC=|1 —1 —5|=23i+3j+4k
2 -3 | 0 -3
i i k| i k|

) BxC=|2 =3 1 |=5i+6j4+8k Then Ax(BxC)=|1 1 0|=8i-8j+k
0 4 =3 5 6 8l

It can be proved that, in general, (A x B) x C# A = (B x ().

Problems (homework)
Answer to the following problems.
1- If A=5i—j-2k and B =2i+ 3j—k, find
(@) AXBand BXA (b) |A X B|
(c)sin ¢ and ¢ where ¢ isthe smaller angle between A and B.
(d) (AXB).B, and (AXB).A.
2- IfTA=3i—-2j+4k,B=2i—4j+5k,and C =i+ j— 2k, find
(@) AX(BXC) (b) (AXB)XC
3- Evaluate
(@) 2i X (3j—4k) (b) (i +2j) Xk (c) (2i —4j) X (i + k)

4- prove that the transformation matrix for a rotation about y-axis through an
angle (0) is given by the matrix :

cos@ 0 —sinf
0 1 0
sin@ 0 cos@

18
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Chapter Two
Dynamic of a Particle Rect.i li vear Motion

2-1: Newton's Laws of Motion:

. Three laws of motion are now known collectively as Newton's laws of
motion or as Newton's laws:

I. The first law describes a common property shared by all matter, named inertia.
The law state that everybody co;_ltinucs in its state of rest, or of unifon}ljlﬂotion in
a straight line, unless it is compelled to change that state by forces impressed upon
it. |

II. Mass and Force: Newton's Second law: The quantitative measure of inertia is
called mass. The change of motion is proportional to the motive force impressed
and is made in the direction of the line in which-that force is impressed. Thus, the

second law can be written as:
d (mv)
dt
Considering the mass to be a constant, independent of velocity (which is not

true of objects moving at "relativistic” speeds or speeds approaching the speed of
light, 3 x 10® m/s) we can write: -

F=

—

F=md
Where a is the resultant acceleration of a mass m subjected to a force F.

IT1. Newton's third law: To every action there is always imposed an equal reaction;
or, the mutual actions of two bodies upon each other are always equal and
directed to contrary parts. |

F]=-F2

Newton's third law, namely, that two interacting bodics exert equal and
opposite forces upon one another.
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2-2: Linear Momentum:

Linear momentum proves to be such a useful notion that it is given its own
symbol:

=mv

So the Newton's second law can be rephrased as follows: The time rate of change
of an object's linear momentum is proportional to the impressed force and may be
written as:

dp
F=

Newton's third law, can be expressed in terms of linear momentum. Thus for
two mutually interacting bodies A and B, we have

P4 _ _Ps
dt = dt

d
a(PA'I'PB):O

P4 + Py = constant

Thus the third law implies “** that the total linear momentum™ of two
interacting bodies always remain constant. This constancy is a special case of the
more general situation in which the total linear momentum of an isolated™”™
systcm’“"J (a system subject”™”™ to no net cxternallyi*"“ls applied forces*?) is a
conserved quantityi“". The law of linear momentum conservation is one of
the most fundamental “*““laws of physics and is valid even in situations in which
Newtonian mechanics fails. |

2-3: Motion of a Particle

The fundamental equation of motion for a particle subject to the influence of
anet force, F, is given by Newton's second law:

F=ma
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We can write F as F,, the vector sum of all the forces acting on the particle

is given by: _
dr =
Fg=2E=m_g=ma 1
The usual problem of dynamics can be expressed in the following way:
Given a knowledge of the forces acting on a particle (or system of particles),
calculate the acceleration of the particle. Knowing the acceleration, calculate the
velocity and position as functions of dime. This process involves solving the

second - order differential equation of motion represented by equation (1).

In most problems F is Known as a function of coordinate (including time), and
we have to find the position of the particle as a function of time. To do so, we have
to solve a set of differential equations
w_F
dt m
The solution of these equations depends upon F
2-2-1: Rectilinear Motion: Uniform Acceleration Under a2 Constant Force:

When a moving particle remains on a single straight line, the motion is said
to be rectilinear. We can choose the x-axis as the line of motion. The general

equation of motion is then:
F(x,x,t)=m¥ ) emmmeees2

The simplest situation is that in which the foree is constant. In this case we have
constant acceleration. and the solution is readily obtained by direct integration
with respect to time:
£ = constant
dv. F i

— =—=constant=a
dt m

fdv=afdt =>vV=v +at
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Since = %x-t- - Then dx = (vo + at)dt

The solution is readily obtained by direct integration with respect to time:

]
x=x +vt+—at’

Where v, is the velocity and x, is the position at t =0. -
Example 1: Consider a block that is free to slide®* down a smooth, frictionless
plane that is inclined * at an angle O to the horizontal®”, as shown in Figure 1(a).
If the height of the plane is h and the block is released’” from rest at the top, what

will be its speed when it reaches the bottom?

@) (b ()

Solution:

The only force along the x direction is the component of gravitational force,
mg sin6, as shown in Figure 1(b). It is constant. Thus, '

Thus v2 = 2(gsind) (55) = 2gh
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Suppose that, instead of being smooth™", the plane is rough"'“ that is, it
exerts a frictional™ force f on the particle. Then the net force in the x-
direction, (see Figure 1(c)), is equal to mg sine —f. Now, for sliding contact it is
found that the magnitude of the frictional force is proportional to the magnitude
of the normal force N; that is, :

J=mN

where the constant of proportionality p, is known as the coefficient of sliding.
The normal force, as shown in the figure, is equal to mg cos0; hence,

f= 1 mg cosO

The net force in the x direction is equal to

F=mgsind -4 mgcosd

= L =g(sind - u cosf)
m k

The speed of the particle increases if the expression in parentheses is positive that
is a to be positive sind > py, cos6 or tanf >

ie 0=tan’ My @>t
tan"'p is called the angle of friction and denoted by &

If 0 = ¢ then a=0 and the particle slides down the plane with constant speed
(v = constant) |

If 6 < £ then a iIs negative (a< 0), and so the pamcle eventually comes to rest the
body eventually come to rest.

For motion up the plane, the direction of the frictional force is reversed; that is, it
is in the positive x-direction. The acceleration (actually deceleration’”"") is then

a = g(sinb+ py cos0).
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2-2-2: Forces that Depend on Position: The Concepts™ of Kinetic*” and

Potential Energy e
A

It is true that the force a particle experiences depends on the particle's
position with respect to other bodies. This is the case, for example, with
electrostatic and gravitational forces. If the force is independent of velocity or
time, then the differential equation for rectilinear. motion is simply:

F(x) = m% S——

By using the chain rule to solve such differential equation to write the
acceleration in the following way:

, dx _dxdx __dv

X=—= vV—
dt dt dx dx

So the differential equation of motion may be written:

dT

m dv’
T2 dx  dx 2

Fix)=
(x)=mv ™

dv
dx

Where T-= %mv’ is the Kinetic energy of the particle .We can now express

. equation 2 in integral form:
JF(x)dx = [dT = %mﬁ’ roonstant 3y
Where [F(x)dx represent the work done on the particle by the force F(x). The
work is equal to the change in the kinetic energy of the particle.
W=F)dx=T-T = -oremeemm-d
Let us define a function \/(x)n such that:

_4dVx) = F(x) S
dx

- The function V(x) is called the Potential energy.
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In terms of V(x), the work integral is:
W= Fde==[ dV=-V@+Vix)=T-T,  -orerrme6
We now transpose terms and write Equation 6 in the following form:
T, + V(x,)= constant =T+V(x)= E
T+V(x)= %mﬁc’ + V(x)=constant = E SR—— |

This is the energy equation. E is defined to be the total emergy of the
particle. It is equal to the sum of the kinetic and potential energies and is constant
throughout the motion of the particle. For one-dimensional motion, if the
impressed force is a function of position Mneﬁc and
potential energies remain constant throughout the motion, such for is called
conservative .Nonconservative forces such as friction which is no potential exists.

The motion of the particle can be obtained by solving the energy cquation:

%m;’;2+V(x)=E and v:d—x
dx 2
=—=+["|E-V
v dt \/m[ (x)]
] dx jdt

2 4
i\/a‘[E-V(X)]

This given t as a function of x.

Example 2: An example of conservative motion is the motion of a freely falling
body. If we choose the x- direction to be positive upward, then the gravitational
force is equal to —mg. Therefore, —dV/ dx = —mg and then V=mgx +C. the
constant of integration C is arblﬁary constant. We can choice C=0 which mean
V=0 when x=0. The energy equation is then:

E= %mf;’ + mgx
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Let the body be projected upward with initial speed v, from the origin x =0.
- These values give: E=x l_my? WY ‘,_.5.;:._:.;.;,:.

£
1, 1 Vo oyl
E=_2—mv =-2.va + mgx _ 2w S

V= v; —2gx
The turning point of the motion, which is in this case the maximum height, is
given by setting v =0.

0=v'-2gx

E=V=mgx =h=x =%

2-2-3:The Force as a function of time: The Concepts of impuls.eeml : F=F(1)

The equation of motion is:

dy
) = m—
FO =m%

The linear momentum (and velocity) can be obtained as a function of time by
integrating the equation of motion to get:

JF()dl = mv(i) + C

C is the constant of integration. The integral [ F(t) is called the impulse.

The position of the particle as a function of time can be found by a second

integration as follow:
z = [v(t)dt = f[[zg-)dt’]dt

Example 3: A block is initially at rest on a smooth horizontal surface. At time
t=0 a constantly increasing horizontal force is applied: F=ct. find the velocity and
the displacement as a function of time.
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Solution:
dv

cf = dt

¥4
v-——f ctdt = o
m

2z
x-—/it—dt———-

2-2-4:The force as a function of velocity:

Forces like viscous™ resistance exerted™™ on a body moving through a

fluid™ or like air resistance ™ on falling (or rising) body are called viscous
forces. If the force can be expressed as a function of v only, the differential
equation of motion F = mX may be written in this case in the form

F(v) = m% ]
Or F(v) = m%g = mv z—z SRS
From ¢q. 1 we found t= t( ) Il :‘(‘i‘)’ o - ........... 3-

mvdv
Fvy - 4

From eq. 2 we found X = x(t) =[

Solving eq. 3 gives v as a function of t, that is v=v(t)

We can solve for x

_ _dx
ST

dx = v(t)dt
By integration to get
x=x(t)= [v()dt = e e 5
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Example 4: Suppose a block is projected™ with initial™* velocity v, on a
smooth horizontal surface and that there is air resistance such that F(v) = - cv the
linear case dominates. Co'cwlote 2 and x 95 @ FunChew o p (43
Solution: The differential equation of motion is:

dv

F(v)= —cv=m ="
(v)=—cv m-

Which gives, upon integrating,

t=I—mdv ____Elr{l]

Ccv C v

o

We can easily solve for v as a function of t!by multiplying by -¢/m and

m V'J

Taking the exponential of both sides. The result is:

c

V=V :g"
]
Thus, the velocity decreases exponentially with time. A second integration gives:

X= i(v . eﬁ:Tl Jdt
That is : \C

Showing that the block approaches a limiting position (in other words the block
never goes beyond the limiting position) given by:
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Problems (homework)

1- Find the velocity x and the position x as functions of the time t for a particle of
mass m, which starts from rest at x =0 and t =0, subject to the following force
functions:

(a) Fy=F, + ct

(b) Fx =F, sin ct

(c) Fx=F,e"

Where F, and ¢ are positive constants.

2- A: Find the velocity x as a function of the displacement x for a particle of mass
m, which starts from rest at x =0, subject to the following force functions:

() F,=F,+ X

(b) Fx =F, cos cx

(©)F, =F,e*

Where F, and ¢ are positive constants.

B: Find the potential energy function V(x) for each-of the forces

3- A particle of mass m moves along a frictionless, horizontal plane with speed.
given by v(x)=k/x, where x is its distance from the origin and k is a positive
constant. Find the force F(x) to which the particle is subject.

4- Given that the velocity of a particle varies with the displacement x according
to the equation % = bx~3 where b is positive constant, find the force acting
on the particle as a function of x.

5- A particle moves with an acceleration which inversely proportional to its
velocity (a=k/v) and start from the origin with speed u cm s, After 3 second
its speed is 2u. find the distance covered in the 3 seconds

6- if a=2-x and v =0 when x=1, describe the motion.

7- A particle at t=0 has the positive x,, the velocity v, is being acted on it by
sinusoidal™ force F=Fo sinwt, calculate its position as a function of time.
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2-3: Vertical Fall through a Fluid®": Terminal“**’ Velocity

It often happens that the force that acts on a body is a function of the
velocity of the body, the case of viscous resistdfice exerted on a body moving
through a fluid. If the force can be expressed as a function of v only, the
differential equation of motion may be written in either of the two forms:

d
F, +F(v)= mEt'i

» By + F(v) =mu-d—tJ

dx
Here F, is any constant force that does not depend on v.

2-3-1: Linear case (F= -cv) :-

For an object falling vertically in a resisting {luid, the force F, in equations
above is the weight of the object (-mg), and the resnstance is proportional to the
first power of v, we can express this force as -- cv regardless of the sign of v
because the resistance is always opp051te to the direction of motion. Let us take
X-axis to be positive in the upward"" direction. Then the differential equation of
motion is:

—mg —w=m> el |
v di
-~
The constant of proportionality ¢ depends on the siz= and shape of the object and

the viscosity of the fluid. Separating variables and i:.tegrating, we find

) = [ m dy [ P omdy ,
~ J F() w—mg—.cr v 9

_m, mgto
¢ mg -+ cvo

il

In which v, is the initial velocity at t = 0. Upon multiplying by -¢/m and taking
the expone¢ntial, we can solve for v:

- _mg +( ) p—etim T |
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Aﬂ:er a suffi cwnt time (t >> m/c) the exponentlal“'" term™ drops “to a
neghglble value** and the velocity approaches the limiting value -mg/c, which
is called the terminal“*" velocity;

It is that velocity at which the force of resistance is just equal and opposite
to the weight of the body so that the total force is zero, and so the acgeleration is
zero. The magnitude of the terminal velocity is the terminal speed ". Let us

designate the terminal speed mg/c by v, and let us write T (which we may call the
characteristic*"”" time) for m/c, then equ. 3 can be write as:

B A N Y A —
In particular, for an object dropped from rest at time t =0, v0 =0, we find
v=-p,(1 -7 -

Integration of equation 3 will give x as a function of t, then we get:

x—xo=£‘v(t)dt=

2
TR G FUR O — ;

We can write equation 5 in the form:
x=x,— vt +x.(1—e 7

m2g
)

mvo

=g+ v,r

+

Where X, =

The ratio between the terminal speed and 7 is:

mg/c

tio = ¢
ratio =— = =g
T m/c
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2-3-2: non-Linear case (Quadratic case, F(v)=t cvz):-

In this case, the magnitude of F(v) is proportional to v’. we must remember
that the sign préceding the F(v) term depends on whether or not the motion of the
object is upward or downward. ‘

. gl
' dv

ey b o = gy
my 4 cv m -

For rising™~ bodies F, is negative (downward)
For falling"* bodies F, is_positive (upward)

The differential equation of motion can be integrated to give t as a function of v:

t=[ m dv =—1'ta!l_’:)l+‘o (rising)

. [ md o —rtanb L 4+t (falling)
f

Where —
\IE:‘; = 1 (the characteristic time)

and ~
4 ’%ﬂ = g, (the lerminal speed)

Solving for v,

/ Terminal speed

to —

(rising) K

v = 1 tan

t__ [

= —p, tanh (falling)

forfogy,

Graphs of speed versus time for a
falling body subject to linear and
quadratic air resistance. :




2-4; Linear Reétoririg Force: Harmonic Motion:

One of the most important cases of rectilinear motion is that produééd by
linear restoring force. This is a force whose magnitude is proportional to
displacement of a particle from some equilibrium position and whose direction s
always opposite to that of displacement. Such force is exerted by an elastic™”
cord™ or by spring”*" obeying”*** Hooke's law.

F=—k(X—a)=—k$ -------- 1

Where X is the total length and a is unstretched = ** (zero load) length of the

spring. “The variable x=(X-a) is the displacement of the spring from its
equilibrium. The proportionality constant k is called stiffness ", Let a particle
of mass m be attached to the spring as shown in figure (a) below. The force
acting on particle is giving by equation 1.

Equilibrium

s Equilibri my
L~ posiion ki
‘/; B Y. § X
7
;j _
/-—-— 2 —————fnfl—— X ——En
- |
m
a: horizontal motion b: vertical motion

Let the same spring be hold vertically as shown in figure (b). The total force now
on particle is: d

o F= k(X ~a)+mg - -2

Where the positive direction is downward™"

. For this case, let us measure x
relative to new equilibrium position, that is : a
x=X—-a-mg/k
This given again:‘
F= —kx

60



In both cases then (a and b) the equation of metion, becomes:

mi+kr=0 - 3

Equation 3 is the linear differential equation of motion with constant coefficient.
We try the function Ae® where q is a constant to be determined " i o

If x = Ae? a solution for all values of time (applying this solution in equ.3),
then we have:

mon (Ae") + Jc(Aeﬂ) --------- 4
which reduces™*™ to the equation:
mgt + k =0
that is: | K
g = it \[% = fwy

where i= V-1 and ‘é’vo = J% ,if f; and f5 are solution then the sum of
f1+ £ 1s a solution too. Thé general solution of equation 3 is then:
= Aot - A_g s 5
Since €= cos u + i sin u, alternate forms of the solution are:
T = asin wel + b cos wyf R 6
Or x = A cos (wl + 0) . 7

The constant A of integration in the above solutions and are determined™*
from the initial conditions. Equatmns 5,6, and 7 are solution of equation 3. The
motion is sinusoidal™*” oscillation™*" of the dlsplaccmcnt 7 x so that equation’
3 is the differential equation of the harmonic”™*" oscillator™*". The coefficient
w, is called the angular*®” frequency " (w,= 2nf, where f, is the linear
frequancy). The maximum value of x is called the amplitude of the oscillation,
it’s the constant A in equation ¥ '
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The period T, of the oscillation is the time required for complete:d‘ls cycle™”

To-»-2-{“-2rﬁ

7= 5\

| Example: A light spring is found to stretch an amount » when it supports a block
of mass m. if the block is pulled downward a distance / from its equilibrium
position and released at time ¢ = 0, find the resulting motion as a function of 1.

Solution:

 (E)

B ﬂ Cad ('A-’.:L “*x Ghl

First, to find the spring stiffness, wc note that in the static equilibrium

condition

so that

F=—kb=—mg

ng

b

Heunce the angular frequency of oscillation is

In order to find the constants for the equation of motion

we have

at time( = 0. But

Thus

80

is the required expression.

z = A cos (wet + o).

z =1 and =0

&= —Awyain (wf + 6)

A=l 6 =0

-t ()
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2-5:Energy Considerations in Harmonic Motion:

Consider a particle under the action of a linear restoring force F, = -kx. Let
us calculate the work done by an external force F.,, in moving the particle from
the equilibrium position (x = 0) to some position x. Assume that we move the
particle very slowly so that it does not gain any kinetic energy; that is, the applied
external force is barely greater in magnitude than the restoring force -kx; hence,
Fexr = - F,=kx, so:

k

W= -EF“’ dr = Ekxdx = Exz el

In the case of a spring obeying Hooke's law, the work is stored in the spring as
potential energy: W = V(x), where:

Vey=lhe? 2

Thus, F, = - dV/dx = - kx, as required by the definition of V. The total energy
when the particle is undergoing *“harmonic motion, is given by the sum of the
kinetic and potential energies, namely,

1.2 ,11.2
=gmi”+zkx e 3

The kinetic energy is quadratic in the velocity variable, and the potential energy
is quadratic in the displacement variable. The total energy is constant if there are
no other forces except the restoring force acting on the particle.

The motion of the particle can be found by starting with the energy equation (3).
Solving for the velocity gives:

m m

o \1/2
i= i(_z_E___’E"__] ------- 4

Which can be integrated to give t as a function of x as follows :

- dx _ A
t=| S T = F(mk)"® cos ' (A)+C . 5
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In which C is a constant of integration and A is the amplitude given by:

2E\* S
A= —
%)

The energy equation(3) that the maximum value of the speed, which is call v,
occurs at x =0. Accordingly, we can write:

1 2 _ 1 2 L

As the particle oscillates, the kinetic and potential energies continually change.
The constant total energy is entirely in the form of kinetic energy at the center,
where x =0 and X = +v,4, and it is all potential energy X = 0 and x = £A.

2-6: Damped Harmonic Motion:

Let us consider an object of mass m that is supported by a light spring of
stiffness k. We assume that there is a viscous retardingu"“ force that is a linear
function of the velocity, such as is produced by air dragi"ﬁ‘ at low speeds. The
forces are indicated in Figure below. |

If x is the displacement from equilibrium, then
the restoring force is —kx and the retarding force
is—cx, where c¢ is a constant of proportionality. The
differential equation of motion is, therefore

mi+ci+kx=0
We trying the solutions:

x = Ae® | % = Age™ and i = AqZe%

Substituting in équation of motion we obtain:

me+cg+k=0
The roots are given by the well known quadratic formula:

—¢ =& (¢ — 4mk)1?

7= 2m
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There are three possible physically distinct e cases T

1-qreal >0 , c2 > 4mk over damping **'%*

2-qreal =0, ¢®* = 4mk critical damplng&”™" -

3 q imaginary , c2 < 4mk under damping™*=" %

1-Overdamping: let call —y, and —y, the two real values of q. the general

solution may then be written:

T = A7 + Ager¥
We see that the motion is non-oscillatory, the displacement x decaying to zero in

an exponential manner as a time go on.

2- Critical damping: (herc q =0). The two root are equal. To find the general
solution, for equal roots, from the original differential equation of motion:

mi+ci+ke=0 - 1
we can written: _
(ii- + y)(—d— + 7’] x=0 w2
dt dt '
: c
Where y=—
2m

(il;r_-\-‘“()t_% =

We make the substitution u=)x + dx / df which then gives:

u=[—d—+ )x
a7

This is integrated to give u = A,e™”. Substitutc back for u we obtain:

d
=[—+yx=Ae™
u (dt y)x e

65



Which can also be written:

dx | d
A =| — 4 - A =— xeﬂ
| ( a ") ] )
A second integration with respect to t then gives:

| A't =xe" - A
Finally we can be rearranged to give:
X= (Alt + Az)e_'yt _ mmm— 3

For both over-damping and critical daﬁiping ,where the displacement x decaying
to zero as a function of time, the motion are non-oscillatory as shown in figure
bellow.

3- Under damping (q becomtff:" imaginary): A mass initially displaced and then
released from rest oscillates. The two roots in equation are conjugate complex
number and the motion is given by the general solution:

4 r=A +g(—1r+i«u)t + A _ely—wnt N 4
Where y = ¢/2m and X

—c+~}c’— v

q= — iia)

x/4mk ¢’ f _ [F_=
a) —_
?= m 4m 4

where w, and w, are the angular frequencies of the undamped and undcrdampcd
harmonic oscillators respectively.

that is
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We now rewrite the general solution represented by equation 4 in terms of the
factors described here, _

T =easmwml+ b cos'mlt) | o [
Where a=1%(A;, — A )andb=A, + A_.
We can also write the solution as: l' 4
| x = Ae 7 cos (wit + )
Where A =(a*+b%)"? and 0, = - tan™' (b/a).

The real from the solution shows that the motion is oscillatory, and the amplitu;ie
Ae™ decays exponentially with time and the angular frequancy of oscillation @
is less than of the undamped oscillator @, as shown in the figure. the frequancy
o is called the natural frequancy. ' -

X

2-7: #Ln'ergy Considerations:
The total energy of the damped harmonic oscillator is given by the sum of
the kinetic and potential energies:
EZlmi + Lhe?
This is constant for the undamped oscillator. Let us differentiate the above
™ expression with respect to t:

dE _ maik + kxx = (m% + kx)%

dt
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Now the differential equation of motion is:
m%+cx+kx=0,0or mi+kx=—cik

Thus we can write:

-d—'?— =—c%®

dt

For the time rate of change of total énergy. We see that it is given by the product
of the damping force and the velocity, Because this is always either zero or
negative, the total energy continua]ly\-decreases and, like the amplitude,
eventually becomes negligibly small. The energy is dissipated™* as frictional heat
by virtue™™ of the viscous resistance to the motion.

Example: A particle of mass is attached to spring of stiffness k. the damping is
such that y = @,/ 4. 1- Find the natural frequency. 2- Find the ratio of the

amplitudes of two successive® ™ oscillations™®’ ™"
Solution: 1- - A 2 e
w = g—w=\/wo“"7’

JE-JE iE
Y18 m V16

2- The ratio is given by

Ae‘A—‘VTI = ¢
where a
rol_
_ i o
Hence, in our problem - _
7, =2 \/.19 _ 2= (16
! Lw V1 4y V15
or ,
_' x {16 -
7T1 § 1-5‘ = 1.56

Hence the ratio of two successive swings is e~ 8 = (.21.
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Chapter four
Dynamic of system of particles

4-1: Center of Mass and Linear Momentum of a System:

We now expand our study of mechanics of systems of many particles (two or
more). These particles may or may not move independently of one another. Our

general system consists of n partlcles of masses m,, m,. . . ,m, whose position
vectors are, respectively, r,, I, . . . ,r,. We define the center of mass of the system
_asthe pomt Whose posmon vector rcm(as shown in Figure bellow) is given by:
2 an e J\, cogely .,L,:.fu o .
. »
Zmil'i- * ’
r :m1r1+m,_r2+---+mﬂrn= P RN L
o my+ mg -+ my m Tt
Ty
®) Center of mass
Where m = Y, m; the total mass of the system. The ‘.
definition in Equation above is equivalent to the Yom
three equations 9 . ¢
. x L
zmixi meyf | thzi
xmn:'m ymn:’m zmz‘m

We define the linear momentum p of the system as the vector sum of the linear
~momenta of the individual particles, namely, L.: 558 o\ev a1 comutt? o7 i

. f 3y et Dot
p=Xp=Xmv.
1 i

~ On calculating ¥, = V,,, from equations above we find

el

LI :,',‘ ',JA - Yoo
py _.apzmvm (.Li'."-‘ ; r”’tf"" A Jv&\)fd'"'_r’_‘(_;f/"'fpjjl

that is, the linear momentum of a system of particles is equal to the velocity of the

center of mass multiplied by the total mass of the system. o

Suppose now that there are extemal forces Fl, Fz, , F, acting on the

P k4
particles. In addition, there may be intérnal “forces of mteractmn between any two
particles of the system. We denote these internal forces by F; meaning the force

exerted on particle i by particle j, with the understanding that F;; = 0.

(1)




The equation of motion of particle i is then: RN
,,g“i \“*!JJJfer"'”g\\-ﬁf »’)Ju")\ e S JXVE
P - ity
l {_,,;:p:"-kﬂf -’J\)-L\ ;:,P;!j\ :_,,)‘_QF{-l-z i =miri =pi
Jj=1
Where F; means the total external force acting on particle i. The second term in
equation represents the vector sum of all the internal forces exerted on particle i by

all other particles of the system. Adding equation above for the n pa,rtlcles we have

n ' i n : n

2 F, + 2 z F, = P
M\m BT o~ E=1 _ _-\,_1=1 j=1 I =l
I the double summation in equation, for every force F;; there is also a force F; i, and
these two forces are equal and opposite

Lo “v'a‘_rrﬂi ', };_,\‘ — Ffj = ~F '

From the law of action and reaction, Newton's third law. The internal forces cancel
in-pairs, and the double sum vanishes. We can, therefore, write

ZFi=p=macm
§

In words: The acceleration of the center of mass of a system of particles is the
same as that of a single particle having a mass equal to the total mass of the system

and actgd on by the sum of the external forces.
N s

For example, a swarm™”™ of particles moving in a uniform gravitational
field. Then, because F= m;g for each particle,

ZFi=Z mg =mg

The last step follows from the fact that g is constant. Hence,

, =8
':,a 2 ,;’ J,xeMJr-‘ ~B ‘-J"V
This is the same as the equation for a single particle or projectile. In the special case
in which no external forces are acting on a system (or if ¥, F; = 0), then a.,, = 0 and

Vem= constant; thus, the linear momentum of the system remains constant:
2 p: =p =mv_,, = constant
i .

This is the principle of conservation of linear momentum.
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'4-2: Angular Momentum and Kinetic Energy of a System: |

The angular momentum of a single particle is defined as the cross product
rx mv. The angular momentum L of a system of particles is defined accordingly,
as the vector sum of the individual angular momenta, namely,

L= 2 (x, Xmv;)
: i=1
" Let us calculate the time derivative of the angular momentum, we find:

i
n o,
9L _3 exmw) +z (xmaj ol
i=1 ) o~

Now the first term on the right vanishes, because, v; x v; = 0 and, because m;a; is
equal to the total force acting on particle i, we can write

o3 o)

7 n

wZ}',xF +3 ¥ r.xF,

L L e (1)
where F; denotes the total extemal force on particle i, and F;; denotes the (internal)
force exerted on particle i by any other particle j. Now the double summation on the

right consists of pairs of terms of the form

N
R R _’f“' CeT

A -
. (r, X Fy) +(ry X Fo) )

&L’f . oy e e 5
Denoting the vector displacement of partlcle _] relative to partlcle i by we see from
the triangle shown in Figure g e s ___M

T, = rj r, SR .
— - Y,
Therefore because FJl = —Fj; expression (2) reduces to m
g os@ St | e
A R ~ry XFy —, 2eve T PR

Which clearly vanishes if the internal forces are cen(t)ral, that is, if they act
along the lines connecting pairs of particles. Hence, the double sum in Equatim(ij*
vanishes. Now the cross product r; x F; is the moment of the external force F;. The
Y r; x F; is, therefore, the total moment of all the external forces acting on the
system.




If we denote the total external torque, or moment of force, by N, equation (1)

takes the form
dL

dt
That is, the time rate of change of the angular momentum. of a system is equal
to the total moment of all the external forces acting on the system. If a system is
isolated, then N =0, and the angular momentum remains constant in both magnitude
and direction:

=N

L= Z r; X m;v, = constant vector
i

This is a statement of the principle of conservation of angular momentum.
4-3-Kinetic Energy of a System of particles:

The total kinetic energy T of a system of particles is given by the sum of the
individual energies, namely, .

T=2, jmo; = 3V, - V) | ) ,,'f PR

i i e . \J Y

we can express the velocities relative to the mass center giving = v,

3 - -

{-:- V‘i.
T=D im (Vo +¥) (Vo + V) g

i v

Z% it +2m(v v,)+2 lm,
i V.
=§um2 m,+v,, Zm‘vi+zl

Because the second summation };m; V; vanlshes We can express the kinetic

energy as follows: ',;
. | mu +Z =m,To [
RS L0 4 K i
The first term is the kmetlc energy of translation of the whole system, and the
second is the kinetic encrgv of motlon relative to the mass center.

_)—il W VP,.D‘ c',r—p adJ.b
4-4: Motwn of Two lnteractmg Bodies: The Reduced Mass
of P vhe pof 0 o ’\;_afp_)

Let us cons1der the motion of a system consisting of two bodies, treated here as

particles, that 1nteract with each other by a central force. We assume the system is
/* Y




45 Motlon of a Body withi Variable Mass: Rocket Motlon S

isolated, and, hence, the center of mass moves with constant velocity. For
simplicity, we take the center of mass as the origin. We have then

ISR LSt mf+mf=0
)}',.:_.Ay ‘4‘:”1 \_,Lr-—" Cpﬁ_}d 1 1 2?

where, as shown in Flgure, the vectors 7jand 75
represent the positions of the particles m; and my,
respectively, relative to the center of mass. Now, if R
is the position vector of particle 1 relative to particle.

2, then
m
vécﬁ‘b,-ll ¥ -7 =%|1+—-1
Ol 1~ T 1( my
r > =
The dlfferentlal equation of motion of particle 1 relative to the center of mass is
dz“"‘ (-)/U JM\#J{ a.))U'J !

mldz—F1 f(R)m— = i H-)\("j’

in which |fz]is the magnitude of the mutual force between the two particles. By
using equation R, we can write

R
—==f '(R)E
The new equation of motion gives the motion of particle 1 relative to particle 2, and
an exactly §i§{1}ilar);squation gives the motion of particle 2 relative to particle 1. This
equation fx;sm’ijre‘(j:is‘ely the same as the ordinary equation of motion of a single
particle of mass p moving in a central field of force given by f(R). Thus, the fact
_that both particles are moving relative to the center of mass is automatically
accounted for by replacing m1 by the reduced mass p where
4= MMy
my, +mgy
The quantity p is called the reduced mass. If the bodies are of equal mass m, then
n= m/2. On the other hand, if m, is very much greater than m,, so that m;/m, is

P
very small, then p is nearly equal to m;. 2GR i
L)A'a—;ﬁ» P B Ls)e’ 3/—..-,1\—-9 " akas _}J ._ﬂ;gg: “ {_&’“‘h‘?t (r\

Consider the general case of the motion of a body with changing mass. Let
F., denote the external force acting on the body at a given time, and let Am denote
the increment of the mass of the body that occurs in a short time interval At. Then




ey
FeuAt is the 1mpulse¢3 delivered by the extemal force, and we have tor the total

linear momentum of the system SR S ,«w- g5 B g

chtAt = (ptotal)t+at — (ptotal)t

if v denotes the velocity of the body and V the velocity of the mass increment Am
relative to the body, then we can write

Feadl = (m + Am)(v + AV) — [mv + Am(v + V)]

this reduce to
F...Al = mAV + AmAv — VAm

Dividing by At, we can write
ext-“ (m+A )—"’ '—V""_

Thus, in the limit as At approach zero, we have the general equation

) v};‘«.',“___;,, e e B (——F Vv Sl Fipaad
gy’ \r et ezt = MV — m<———

The force F.y represents any external force, such as gravity, air resistance,
and so forth. In the case of rockets the Vi represents the thrust<™,

Let apply this equation of motion to two special cases in which mass is added to or
lost from the moving body Fi irst, suppb'Se that the body is falling through a fog or
mist so that it collects mass as it goes. In this case the initial velocity of the
accumulated matter is zero. Hence, V = —v, and we obtain for the equation of

motion. d
F,, =mv+vmi= -(—E(mv)

It applies only if the initial velocity of the matter that is being swept us is zero

For the second case, consider the motion of a rocket. The sign of m is negative

because the rocket is losing mass in the form of ejected fuel. Here, we solve the .

equation of motion for the simplest case of rocket motion in which the external
force on it is zero; that is, the rocket is not subject to any force of gravity, air
resistance, and so on. Thus, F.= 0, and we have

. * V} - N
P \J\--q.ﬁ:

mv=Vm . . R I




We can now separate the variables and integrate to find v as follows:

‘ > _[ v Vdm

If we assume that V is constant, then we can integrate between limits to find the

o (T - Y g2 P (GMe ) e
ST a)vu j—:‘é‘ S = /“( -._;.J ST
r—“ s - 7

dv = —V gm

o~ my m W — “'L_&_J_'x

speed as function of m:

5 AP

v =1, +/V e .
| AT IS A Me o't
Here m, is the initial mass of the rocket plus unburned*”" * fuel ** m is the mass
at any time, and V is the speed of the ejected fuel relative to the rocket meg

the nature of the 10gar1thm1e function™™ , the rocket must have a large fuel to-
payload ratio to attam " the large speeds needed for launchmg ¥ satellites into

space.

e y4

Problem: N s ') NS BV

.n o\ > [

Find the equation of motion for a rocket fired vertically upward, assuming g is
constant. Find the ratio of fuel to payload to achieve a final speed equal to the
escape speed; from the Earth if the speed of the exhaust gas is K¥8, where k is a

given constant, and the fuel burning rate is |m/|." e
Solution:
. —mg = mv — Vi
since ¥ is opposite in direction from v . 2
—mg = mv+FVm F
—mgdt = mdv +Vdm ;
dm dm
m=— so df =—
¢it m -
dm v
—mg — = mdv +Vdm
1 , <
dv =—dm £ +—
woom
e r g I/ : il ‘ 4
L dv=- _I: dm| = + — m,, =payload mass
1" AV
n ) e j "\u\‘- .

v, =‘£(”1, —-m )+V In—
1 m,

Q,



I?If =m - l?l’p =m

",
v =£m 4V Inl 1+
e - I
7} m

o

il 1e oy _gm
: m, V V m

Problems:

4-1: A system consists of three particles, each of unit mass, with positions and

(a) Find the position and velocity of the center of mass.

velocities as follows:

r,=j+k vy=]
I'3=k V3=i+j+k

~ (b) Find also the’linear momentum of the system.

(c) Find the kinetic energy of the system.

' (d) Find the value of mo%y/2.

(e) Find the angular momentum about the origin.

Solution: from equation 7 =L 7

a-

'

—

v{' "

PR
cmt -
2

d _
= lem
dr “

mS

(4 )= (T+j+ ke )

r;.,,,:é(hzj:rzfé)

v, ;-134(3f+2}'+£)

[©)

_—

m, = fuel mass

z

:%(ﬁ, +§2+§3):%(25’+j’+f+j’+12)




b: From equation  jp= > m,v, =, + v, + 1,

p=3i+2j+k

.c: T'—'—'E‘:é—m‘.vf
l 2 2 2 7 2
T=5[2'+1“+(I*+1“ + 1 )]=4

d: ﬁm=%(35+2]+13)

[:=(-—21€)+(—f)+(}-—i)=—2f+]—2/§

' . 1
4-2: Show that the kinetic energy of a two-particle system i-"“é"mv§m+ Eyoﬂ:

m =m,; + m,, v is the relative speed, and p is the reduced mass.

Solution: from equation

T "——"_Z mm,v 2 -l—mi(v -v,)

£

51 2
=—mv, +—m,V,
2 -
Meanwhile;
)
| ] l mv +mv, Y 1 mm o N2
—mv: =y’ m| A2 | - — 12 (Y )
2 2 "2 i 2 m +m,

___ I 2 2 2. 2 2 = = :
= ’)—,; ”II Vl +m-_.v:, <4 fﬂlfnl,vl ’\r‘z +f?3|.??12( +“2 - ‘.V V )

=—my, + 5 1M, V,

Therefore. T = — mv o+ 1 uv’
2 2

, where




4-3: Show that the angular momentum of a two-particle system is:

r,, Xmv,, +RXuyv

where m = m; + m,, p is the reduced mass, R is the relative position vector, and v is.
the relative velocity of the two particles.

Solution: from equation P
o ’.d'
- . —_— —_— - >
L=r_xmy +Zr,.><mv Wi o
.
Z;; XMy, = xm,v +;, X m.,\. . Yew " ‘”:}\‘Jw
\

From equation:

m - .
R=F -F =0 l+—L | =5| T | _Thy \
Mgy m, H ‘
. . s r 4 Ly o - e
Since from equation | G
= W= S .
=" < L
HI] ) - "'!‘ *
= n, = B
R=-—F
H

B 7 B =
Z: X My "-&Rxmlv +[ JRxmzvz
n,

f?fl
=;1Rx(?’,—v2)= Rx pv

L=rF xmv, +Rxpuv

(‘ "

&'.{.:l_.-J
4-4: A rocket traveling through the atmosphere experiences a linear air resistance

—kv. Find the differential equation of motion when all other external forces are
negligible. Integrate the equation and show that if the rocket starts from rest, the

final speed is given by
v =Va[l - (m/my)"'®]

Where V is the relative speed of the exhaust fuel, = |mv/k| = constant, m, is the

initial mass of the rocket plus fuel, and m is the final mass of the rocket.




Solution: from equation F,, =P =mv-Vm

v =mv-Vm

Since V is opposite in direction from v
—kv=mv+¥Vm
m. M

yaty iy a

k k- A

it (grepiv/ 1

o= and since m <0, a=——

k
m o, m dv m dv dm dv
v—aV=a—v=a——=a————=am—
h i dt mdmd  dm

dn _ dv

—V
b d:n . dv
'[:‘ m _-[;v—Va'

1 m v—Va
— In( J = ln( )
a m. —Va

Homework:

1- locate the center of mass of three particles of mass m;=1 kg, m,= 2kg, and

m;=3 kg at the center of triangle 1 m on side

2- find the center of mass, the velocity of the center of mass, the momentum, and

the kinetic energy of the following system:

m,= 1 kg m=1+2j+3k Uy = 21 + 3]
m,= 1 kg m=1i—j+k B, = 2j + 3k



4-6: Mechanics of Rigid Bodies: Planer Motwnr A5

For idealized a rigid body may be regarded as a system of particles whose
relative positions are fixed, in other word, the distance between any two particles is

constant.
4-6-1: Center of Mass of a Rigid Body:

We have already defined the center of mass of a system of particles as :

2 x;my Z yim 2 Zm,
Z m; Z m, 2 my

For a rigid extended body, we can replace the summation by, an integration over
- the volume of the body, namely,

L px dv L pydo | L pzdy
Xem = : Yem = Zem = F 1.
' Lpdv J;Pdvr}y' J;pdv

;f\

Where p is the density and dv is the element of volume. If a rigid body is in the
form of a thin shell, the equations for the center of mass become:

J.pxds Ipyds B fpzds
S P PR T

Where ds is the clement of area and p is the mass per unit area, the integration
extending over the area of the body. Slm1larly, if the body is in the form of a thin
wire, we have -

o [pxa _Jpva | jpzdz
om = Yom Zom
J;pdl jpdz jpdz

In this case, p is the mass per unit length and dl is the element of length. For
uniform homogeneous bodies, the density factors p are constant in each case and,
therefore, may be canceled out in each of the precedmg equations.

* ’ -y [
Fial V--‘ : .a.f“:’,r:-\‘
SR PN A




- If a body is composne that is, if it consists of two or more parts whose centers
of mass are known then it is clear, from the definition of the center of mass, that
we can write Lty T e P

paad
L e m:‘"' r“,iﬂ w«';-ry .

e e e .
e ]

em
ml +m2 % bl »-W;/jwldf“’ mw ,muf*‘?

la,,{d M’s .vf’ f. V»Lj}

With similar equations for y, and zy,. Here (xl,y],zl) is the center of mass of the
part my, and so on. ORI LU A

- N
-;:"‘

g b

If a body possesses symmetry, for example, the body has a plane of symmetry, that
is, if each particle m, has a mirror image of itself 7h; relative to some plane, then the
center of mass lies in that plane. To prove this, let us suppose that the xy plane is a
plane of symmetry. We have then

- Y (zm, +zm;)
o 2 (m;+m,)

i

But m; = 1; and z; = —z; Hence, the terms in the numerator cancel in pairs, and so
zZ., = 0; that is, the center of mass lies in the xy plane. Similarly, if the body has a
line of symmetry, it is easy to show that the center of mass lies on that line.

e

4-6-1-1: Solid Hemisphere @t 1P

To find the center of mass of a solid homogeneous hemisphere == of radius
a, we know from that the center of mass lies on the radius that is normal to the
plane face. Choosing coordinate axes as shown in figure we see that the center of
mass lies on the z-axis. To calculaie z.,, we use a circular element of volume of
thickness dz and radius = (a> —z")"”, as shown. Thus,




_ La . '
P ay [ a* 4
do=ma®—2)ds  Fex g YT Mo
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4-6-1-2: Hemispherical Shell e
.

For a hemispherical shell of radius a, we use the same axes as in Figure. Again,
from symmetry, the center of mass is located on the z-axis. For our element of

surface ds, we choose a circular strip of width d/ = ad0. Hence,
| .

ds = omrdl = 2n(a® - 2%2)"%ad6
6 =sin™’ (ﬁj de = (a®-2*)"ds

a ‘ia

FrEEY =
cst 1w a™ 2™ a [a Lt X4

~ds=2radz

The location of the center ofgimss is accordingly given by:

_ I: perazdz |

Zem =_2_a
Ep?.n'adz
:;”: T

© 4-6-1-3: Semicircle
To find the center of mass of a thin wire bent into the form of a semicircle of

radius a, we use axes as shown in figure. We have

dl
db




dl =adb
and
z=asinf
Hence,
n »
_ Iﬂ p(a sinB)a db 2
I: padg = 7

4-6-1-4: Semicircular Lamina

In the case of a uniform semicircular lamina, the center of mass is on the z-
axis (Figure above).

vav J8 _4a —

"’5 e Loy T 3m ‘ :f Jb =y

ff'ﬁ L
¢Jd Y @8

4-6-2: Rotatlon of a Rigid Body about a Fixed Axis: Moment of Inertia

The simplest type of rigid-body motion is that in which the body is constrained -

to rotate about a fixed axis. Let us choose the z- axis of an approprlate coordinate
system as the axis of rotation. The path of a representatwe particle m; located at the

point (x;, y;, z;) is then a circle of radius (x + i ) = r; = centered on the z-axis.
A representative cross section parallel to the xy plane is shown in figure.

The speed v; of particle i is given by:

i

o, =ro =2 +y?) @

a study of figure, we see that the velocity has
components as follows:

§; =V, COSQ; = OX; | ;
z, =0 VAR A 1)




The three equations above can also be obtained by extracting the
components of the vector equation:

=wXr,
where @ = k. <4
o2 e sl PR
Let us calculate the kinetic energy of rotation of the body. We have

_22 104——[27’% )m =L’

=2 = Zmi(x? +45)

The quantity I, is called the moment of inertia about the z-axis.
NEFSYS DTN VAP IR
Let us next calculate the angular momentum about the axis of rotation. Because the

angular momentum of a single particle is r; x m;v; the z-component is: L) el
L NV ‘MT\" 7 ; l

. N 2 2 — 2 X, Y.

mi(xiyi‘“yixi)"mf(xi+yi)m“m¢rim o
., 1 w, (XY - o)
'}([W_ (—j}w)

The total z-component of the angular momentum, which we call L, is then given by
summing over all the particles, namely,

v }d i*s
‘L 5‘;\ M
Vs B g =Zmrio=Lo

the rate of change of angular momentum for any system is equal to the total
" moment of the external forces. For a body constrained to rotate about a fixed axis,
~ taken here as the z-axis, then

?:j‘-f' Y jil m; ;;;fj;bjl Vg ",{”) N:sz — d(Izw)
1 S '

050 il e

WLJ":}

Where N, is the total moment of all the applied forces about the axis of rotation (the

component of N along the z-axis). If the body is EE}E" then 1, is constant,
and we can write .




do
Vo=l
The analogy between the equations for translation and for rotation about a
fixed axis is shown in the following table:

Translation along x-axis Rotation about z-axis

Linear momentum p, =mov; Angular momentum L,=L®

Force F.=mo, Torque A —I )

Kinetic energy T= imv2 Kinetic energy T = I o
it -\

Thus, the moment of inertia is analogous to mass; it is a measure of the rotational
inertia of a body relative to some fixed axis of rotation, just as mass is a measure
of translational inertia of a body.

4-7: Calculation of the Moment of Inertia:

In calculations of the moment of inertia ¥; m;r7 for extended bodies, we can
replace the summation by an integration over the body, just as we did in

calculatlon of the center of mass. Thus, we may write for any axis
PO ITI SIS (Pa U] s o5 0 s f "oy A

W 12 fitdm e (e mes )
Where the element of mass dm is given by a density factar multlphed by an
appropriate differential (volume, area, or length), and r is the perpendicular
distance from the element of mass to the axis of rotation. In the case of a
composite body, from the definition of the moment of inertia, we may write

I=L+1,+
where I, I, and soon, are the moments of inertia of the various parts about the
particular axis chosen. Let us calculate the moments of inertia for some important
special cases.

4-7-1: Thin Rod j/ Ais

For a thin, uniform rod of length a and mass m,

we have, for an axis perpendicular to the rod at < a =}

one end N .
o —»] fe— dx x

©




_f°.2 _1 3 _1 2
I, —on pdx =3 pa” =zma
The last step follows from the fact that m = pa.
Z
If the axis is taken at the center of the rod, we o ANS

have

a/2
0 2 B R ey A
,Iz—j_dzx pdx = pa” = zma

4-7-2: Circular Disc or Cylindrical Shell . - =~ ¢ - -
/)aclézg»f\éw.:@\t‘?td&#’y;w—‘/db&Qf’!&f’{ od,dl alsZ
In the case of a thin circular disc or cylindrical shell, for the central, or symmetry,

axis, all particles lie at the same distance from the axis. Thus,

Is) b 4

—a—] |+— dx %

roln

: i
. T Ia:ns =ma - ol G
Where a is the radius and m is the mass.

To calculate the moment of inertia of a uniform
circular disc of radius a and mass m, we use polar
coordinates. The element of mass, a thin ring of
radius r and thickness dr, is given by

Axis
- \
dm: 27:1" dr ’a- \( /",
P \),”,)5‘57,9 ,tJ/ el
5 ,)\f". 2
X \,.;o_:d\[r\:) v”,/
Where p is the mass per unit area. ’Fhé moment of inertia about an axis

through the center of the disc normal to the plane faces (as shown in figure) is
obtained as follows:

. 4
Im = Jo rip2nrdr = Mp% = -%mcz2

(A
The last step results from the relation m = pra’.
Equation above also applies to a uniform right-circular cylinder of radius a and

mass m, the axis being the central axis of the cylinder.




4-7;3: Sphere:

Let us find the moment of inertia of a
uniform solid sphere of radius a and mass m about
an axis (the z-axis) passing through the center. We
divide the sphere into thin circular discs, as shown
~ in figure. The moment of inertia of a representative
disc of radius y is

AR S e
f %yzdm

dm = prry” dz;
But
I = ja Lrpy* dz = _[: %np(az —29)2dz = %xpaf

i B

Because the mass m is given by

We have

_2 9
; =gma

For a solid uniform sphere, Clearly also, I, =1, =1,.
4-7-4: Spherical Shell |
The moment of inertia of a thin, uniform, spherical shell can be found very

simply by differentiate equation (I, = % 7 pa® ) with respect to a, namely,

8
| dl, =z 7mpa’da
the result is the moment of inertia of a shell of thickness da and radius a. The mass
of the shell is 4ma’p da. Hence, we can write

_ 2 2
I, =3ma



‘Problems
1- Find the center of mass of each of the following:

(a) A th1n wire bent into the form of a three-sided, block-shaped "u" with each
segment of equal length b.
s
(b) A quadrant of a uniform circular lamina of radius b
(c) The area bounded by parabola y = x*/b and the liney = b

(d) The volume bounded by parabolmd of revolutlon z = (x* + y*)/b and the plane

z=D.
Solution: o
| " | i
(a) For cach portion of the wire having a mass’—;: and centered al Y o
. N :
(MQE (0,0).and (b E)
2 2, 2
RO ERE O
Xy =— ST
“om| \2 2\ 3
A
..ycm m 2 2 J 3
b
1 L |
(b) ds = xdy = (b2 —-y")" dv Y
C Ya ., Vow == p}p(})" -y )2 d}:
_ m
‘ ]
P~ (h -y Y d (b -
. _—— - - =}
= AL Py
Vem =
— b’ p
4b l w8
y{'iﬂ 3}1_ - \:’f ‘y"
4b

me symmetry, X, =—-—
r




The center of mass is on the y-axis.

1
4y:¥1b %5 ds = 2xdy=2(by)? dy

t 3
' ’ f 2py(by)? dy fyzafv
- yr.'m = 3 _I i l
I 2p(by)2 d}.' -[:yE d-},
_3b
y(.‘"l S
(d) , | The center of mass is on the z-axis.

| : dv=nridz=rn (,\’1 +y )dz = wrhzdz

Z = (x'xd) . : % s b
i | \ g B f pzrbzdz ~ fzzdz

il fpfrbzdz ) 'E 2dz

L

ch" 3

2- Find the moments of inertia of each of the objects in Problem 1 about their
symmetry axes.

Solution: (@) /. = El:ml.Rf ='—;[(%) +(l+(%)1

[ = mb’
¢ . = i
(®) 2 ds=rdfdr, R=rsin€  ° o) S0l
ﬁ ]:=JR:pd5 Sndy J“’lJf"*"" sng S
} I
y = =k J:‘i . 2
f * ]: _p'[;of rdr ._;5m 0d60
| - pb-l 4 Ty
| I =£— |* sin” 040
1 ,- 2 -r%
' ) 9 sin20
‘ Isin' 0df =—- i jl
2 4
A F]
!'QJJV-’ I _ph” E_l)
2| 1/, 2 372
\ %
\ |/ Vi
\' ‘j‘ mb’
Js: ¢dg ds d ='EH_(”“2)
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E- E  Where the parabola intersects the line y = .
X
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Chapter One
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1-1: Scalar and vectors

A scalar i1s any positive or negative physical quantity that

can be completely specified by its magnitude. such as mass, length,
density, volume and temperature.

A vector iIs any physical quantity

that requires both a magnitude and /
direction for its complete description. A magnitude

vector iIs shown graphically by an arrow. /

The length of the arrow represents the
magnitude of the vector, and a fixed axis itial
defines the direction of its line of action point
.The head of the arrow indicates the sense | " “girection

of direction of the vector (as shown In

figure).



For handwritten work, 1t 1s often convenient to denote a

vector quantity by simply drawing an arrow on top it A, (K). In
print, vector quantities are represented by bold face letters such as
A, and its magnitude of the vector is italicized, A.

1-2:Geometric Properties :

A v ¥
1. Two vectors A and B are equal if // / .
they have the same magnitude and z /
direction regardless of their initial —= 3o

points. Thus A = B.

2. A vector having direction opposite to
that of vector a but with the same a »
magnitude is denoted by -a .



3. The sum or resultant of vectors A
and B of Fig. 1-2(a) below Is a
vector C formed by placing the
Initial point of B on the terminal
point of A and joining the initial
point of A to the terminal point
of B [see Fig. 1-2(b) belows].

The sum C is written C = A + B.

The definition here Is equivalent

to the parallelogram law for

vector addition as indicated In

Fig.1-2(c) below.

C=A+B

Vi+ Va+ Vo Vo + Vg + V4

V1+V2+V3

Y R
v 2
Vs . Vs
R Vi
Vi




4. The difference of vectors a and b,

represented by A - B, Is that vector C
which added to B gives A. Equivalently,
A - B may be defined as A + (-B).
If A =B, then A—B is defined as the null
or zero vector and Is represented by the
symbol 0. This has a magnitude of zero
but its direction is not defined.

5. Multiplication of a vector v by a scalar
m produces a vector mv with
magnitude times the magnitude of v
and direction the same as or opposite to
that of v according as m is positive or
negative. If m = 0, mv = 0, the null
vector.

Vector Zerovector



1-3: Algebraic Properties of Vectors:

The following algebraic properties are consequences of the
geometric definition of a vector. If A, B and C are vectors, and m
and n are scalars, then:
1.A+B=B+A Commutative Law for Addition
2.A+(B+C)=(A+B)+C Associative Law for Addition
3. m(nA)= (mnN)A=n(mA)  Associative Law for Multiplication

4. (Mm+nA=mA+nA Distributive Law
5.m(A+B)=mA+mB Distributive Law
6. A+0=A

7.A+(-A)=0

Note that In these laws only multiplication of a vector by one or
more scalars iIs defined.



1-4: Unit Vectors:

Unit vectors are vectors having unit length. If A'Is
any vector with length A > 0, then A/A Is a unit vector,
denoted by a, having the same direction as A. Then
A = Aa. The rectangular unit vectors I, J, and k are unit
vectors having the direction of the positive X, y, and z
axes of a rectangular coordinate system [see Fig. 1-3].




1-5: Components of A Vectors:

Any vector A In 3 dimensions can be represented with
Initial point at the origin O of a rectangular coordinate system
[see Fig. 1-3]. Let (A;AA,) be the rectangular coordinates of the
terminal point of vector A with initial point at O. The vectors A, i;
A, J; and A, k are called the rectangular component vectors, or
simply component vectors, of A in the X, y; and z directions
respectively. The sum or resultant of A, I; A, J; and A Is the
vector A, so that we can write:

A=Ai+Aj+AK !

The magnitude of A is: I

y

A:|A|:\/A%+A§+A§



In particular, the position vector or radius vector r from O to
the point (X; y; z) Is written:

A=r=XIt+Yy] +zK

By
—_
=

[=

and has magnitude: i

o |r| — _\/.\»2 _|_-‘$2 + :2' i/ ’ A,
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