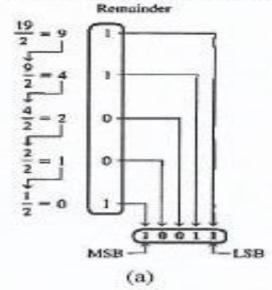


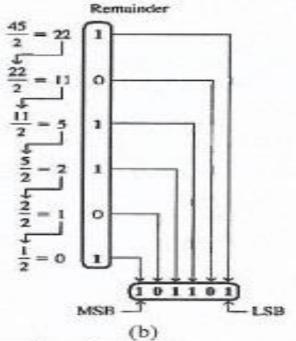
جامعة الموصل / كلية الهندسة

قسم الهندسة الكهربائية Subject Title: Digital Techniques

Subject Code: DIGT208

Class 2: Power and Electronics


Instructor: Yehia Rehab Hamdy


Course Description Outlines (15 weeks)

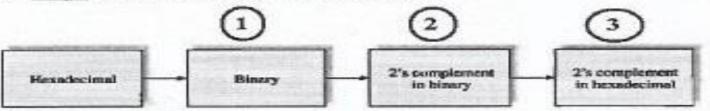
- > Number Systems and Operations.
- > Logic Gates.
- ➤ Boolean Algebra and Logic Simplifications.
- > Combinational Logic Analysis.
- > Functions of Combinational Logic.
- > Basic Logic Circuits Design.

Figures, Diagrams, or Examples.... etc

Chapter 1: Number Systems, and Operations:

2-Converting Decimal Fractions to Binary by using Repeated Multiplication by 2:

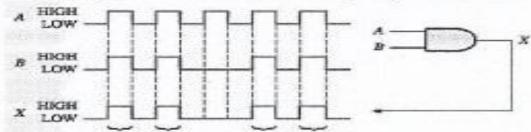
- As you have seen, decimal whole numbers can be converted to binary by repeated division by 2.
- Decimal fractions can be converted to binary by repeated multiplication by 2.
- For example, to convert the decimal fraction 0.3125 to binary, begin by multiplying 0.3125 by 2 and then multiplying each resulting fractional part of the product by 2 until the fractional product is zero or until the desired number of decimal places is reached.
- The carry digits, or carries, generated by the multiplications produce the binary number.
- The first carry produced is the MSB, and the last carry is the LSB.
 This procedure is illustrated as follows:


(a) 23_{16} $+16_{16}$ 39_{16}	right column: $3_{16} + 6_{16} = 3_{10} + 6_{10} = 9_{10} = 9_{16}$ left column: $2_{16} + 1_{16} = 2_{10} + 1_{10} = 3_{10} = 3_{16}$
(b) 58 ₁₆ + 22 ₁₆ 7A ₁₆	right column: $8_{16} + 2_{16} = 8_{10} + 2_{10} = 10_{10} = 7_{10}$ left column: $5_{16} + 2_{16} = 5_{10} + 2_{10} = 7_{10} = 7_{10}$
(c) 2B ₁₆ + 84 ₁₆ AF ₁₆	right column: $B_{16} + 4_{16} = 11_{10} + 4_{10} = 15_{10} = F_{16}$ left column: $2_{16} + 8_{16} = 2_{10} + 8_{10} = 10_{10} = A_{16}$
(d) DF ₁₆ + AC ₁₆ 18B ₁₆	right column: $F_{16} + C_{16} = 15_{10} + 12_{10} = 27_{10}$ $27_{10} - 16_{10} = 11_{10} = B_{16}$ with a 1 carry left column: $D_{16} + A_{16} + 1_{16} = 13_{10} + 10_{10} + 1_{10} = 24_{10}$ $24_{10} - 16_{10} = 8_{10} = 8_{10}$ with a 1 carry

7-Hexadecimal Subtraction.

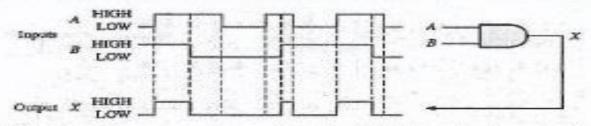
- The 2's complement allows you to subtract by adding binary numbers.
- Since a hexadecimal number can be used to represent a binary number, it can also be used to represent the 2's complement of a binary number.

Subtraction Method.


- Step1-Convert the hexadecimal number to binary.
- Step2-Take the 2's complement of the binary number.
- Step3-Convert the result to hexadecimal.

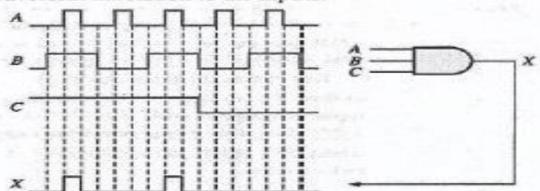
Example (24): Subtract the following hexadecimal numbers:

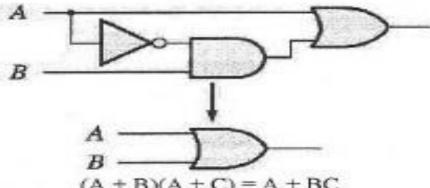
Example (3): If two waveforms, A and B, are applied to the AND gate inputs as in the Figure, what is the resulting output waveform?



A and B are both HIGH during these four time intervals.

Therefore X is HIGH.


Solution: The output waveform X is HIGH only when both A and B waveforms are HIGH as shown in the timing diagram in the Figure.


Example (4): For the two input waveforms, A and B, in the Figure, show the output waveform with its proper relation to the inputs.

Solution: The output waveform is HIGH only when both of the input waveforms are HIGH as shown in the timing diagram.

Example (5): For the 3-input AND gate in the Figure, determine the output waveform in relation to the inputs.

Rule 12:

$$(A+B)(A+C) = A+BC$$

This rule can be proved as follows:

$$(A + B)(A + C) = AA + AC + AB + BC$$
 Distributive law

$$= A + AC + AB + BC$$

$$= A(1 + C) + AB + BC$$

$$= A.1 + AB + BC$$

$$=A(1+B)+BC$$

$$= A.1 + BC$$

= A + BC

Rule 7: AA = A

Factoring (distributive law)

Rule 2: 1 + C = 1

Factoring (distributive law)

Rule 2: 1 + B = 1

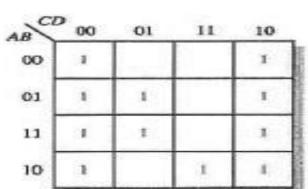
Rule 4: $A \times 1 = A$

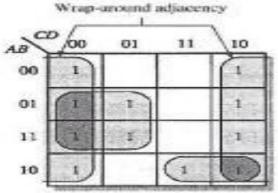
• The proof is shown in the Table, which shows the truth table and the resulting logic circuit simplification.

A	B	C	A + B	A+C	(A+B)(A+C)	BC	A + BC
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1
1	0	_1	1	1	1	0	1
1	1	0	1	1	1.	0	1
1	1	201	1	1	1	1	1
		MES!		对是我		1000	
1000			Table 1		e	qual -	200

Chapter 3: Boolean Algebra And Logic Simplifications.

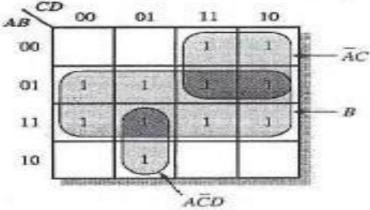
 This means that the SOP expression in the previous example and the POS expression in this example are equivalent.


Example (13): From the truth table in shown, determine the standard SOP expression and the equivalent standard POS expression.


	INPU"	OUTPUT	
A	В	C	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Solution:

ĺ	INPUT			OUTPUT	SOP	POS	
	A	В	C	X	SOF	ros	
1	0	0	0	0		(A+B+C)	
Ī	0	0	1	0		$(A+B+\overline{C})$	
1	0	1	0	0		$(A + \overline{B} + C)$	
Ì	0	1	1	1	ABC		
1	1	0	0	1	ABC		
	1	0	1	0		$(\overline{A} + B + \overline{C})$	
1	1	1	0	1	ABC		
-1	1	1	1	1	ABC		


- The resulting standard SOP expression for the output X is:
 ABC + ABC + ABC + ABC.
- The resulting standard POS expression for the output X is: $(A + B + C) + (A + B + \overline{C}) + (A + \overline{B} + C) + (\overline{A} + B + \overline{C}) + (\overline{A} + B + \overline{C})$

4-Determining the Minimum SOP Expression from the Map

Example (17): Determine the product terms for the Karnaugh map in
the Figure and write the resulting minimum SOP expression.

Solution: The SOP terms are:

 $X = \overline{ABCD} + \overline{ABCD}$

- Eliminate variables that are in a grouping in both complemented and uncomplemented forms.
- In the Figure, the product term for the 8-cell group is B because the cells within that group contain both A and A, C and C, and D and D, which are eliminated.
- The 4-cell group contains B, \overline{B} , D, and \overline{D} , leaving the variables \overline{A} and C, which form the product term \overline{AC} .

TEXTBOOK OR REFERENCES

- ➤ Digital Fundamentals (11th Edition) by Thomas L. Floyd.
- ➤ Digital Systems Principles and Applications (8th Edition) by Ronald J. Tocci and Neal S. Widmer.
- ➤ Digital Design and Computer Architecture (2nd Edition) by David Money Harris and Sarah L. Harris.