

جامعة الموصل كلية العلوم قسم الفيزياء

منهــــج دراســــة الماجســتير الفصــل الدراســي الأول

الرمز	عدد الوحدات	مات بة عمله	عدد الساع الأسبوع نظري	الموضوع
501	3	-	3	حالة صلبة متقدم
502	3	-	3	نووية متقدم
503	3	/-	3	فيزياء رياضية
504	3	-	3	ميكانيك الكم
505	2	-	2	فيزياء النانو
506	1	0	1	اللغة الانكليزية
	15	-	15	مجموع الساعات / الوحدات

Lastran Norma	Ass Drof Also shoul have in hamed
Lecturer Name	ASS.Prol.Alaa addul nakelin named
Subject Name	Advance Quantum Mechanics I / second course
Academic Year	2023-2024
Credit Hours	3 hours in week

Students do study the following fields:

- 1. Tools and postulates of Q.M.
- 2. Angular momentum
- 3. Rotation and addition of angular momentum.
- 4. Equation of motion.
- 5. Dirac notation.

Course Outcomes:

1. The cours begins with the experimental basis of quantum mechanics, where we look at those atomic and subatomic phenomena which confirm the failure of classical physics at the microscopic scale and establish the need for a new

approach. Then come the mathematical tools of quantum mechanics such as linear spaces, operator algebra, matrix mechanics, and eigenvalue problems; all these are treated by means of Dirac's bra-ket notation. After that we discuss the formal foundations of quantum mechanics and then deal with the exact solutions of the Schrödinger equation when applied to one-dimensional and three-dimensional problems. We then look at the stationary and the time-dependent approximation methods.

2. to give a self-contained, yet concise, presenta tion of most issues of nonrelativistic quantum mechanics, and to offer a rich collection of fully solved examples and problems. This unified format is not without cost. Size! Judicious care has been exercised to achieve conciseness without compromising coherence and completeness.

Weekly Teaching Plan

Week 1, 2	The Schrödinger equation	
Week 3,4	Momentum and the uncertainty principle	
First Quiz		
Week 5,6	Mathematical tools of quantum mechanics	
Week 7,8	The Hilbert space and wave functions	
Second Quiz		
Week 9,10	Representation in Discrete bases	
Week 11,12 Representation in continuous bases		
Third Quiz		
Week 12, 13	The harmonic oscillator	
Week 14,15	Angular momentum	
Course Final Term Exam		

Computer Usage: Good

Teaching Techniques: theoretic Assessment methods: E-Learning

References (text book) :

1-Quantum mechanics. by Powell & Crascman

2-Q.M. concepts & applications. by Zettili

3- Introduction to Quantum mechanics by J.Griffths

جامعة الموصل كلية العلوم قسم الفيزياء

1. Course	Name:			
Advanced So	lid State Physics			
2. Course	Code:			
3. Semest	3. Semester / Year:			
Second Semester/2024 – 2025				
4. Description Preparation Date:				
1 <mark>8-2-2024</mark>				
5. Availat	5. Available Attendance Forms:			
Presence	ce			
6. Numbe	6. Number of Credit Hours (Total) / Number of Units (Total)			
45/3	Units			
7. Course	e administrator's name (mention all, if more than one name)			
Name:	Asset Prof. dr. Mahmood Ahmad Hamood			
Email:	<u>dr.mahmood@uomosul.edu.iq</u>			
Name :	Prof. dr. Mazin Ahmed Abed			
Mazin:	mazinahmedabed@uomosul.edu.iq			
8. Course				
Course	1. The learn more advance things in solid state physics			
Objectives	2. Enabling the student to study some advanced specialization in solid			
. 6	3 Developing the mental ability of the doctoral student by assigning him			
	to solve a large number of questions and to be able to reach correct			
	answers to specific questions that include the application of			
	physical principles.			
	4. Developing the ability to formulate analytical questions			
	5. Preparing the student for the future in postgraduate studies.			
	6. Through the narration in each chapter, the student remains exposed to			
	the question: Why? Or can you explain that?			
	Each chapter concludes with a set of cognitive questions to develop t			
	student's ability to apply the principles of solid state physics in			
	gualitative manner			
9. Teachin	ng and Learning Strategies			
Strategy	Method and procedure, which includes:			
	1- Presentation and detailed explanation			
	2- Problem posing and discussion And ask perceptive questions.			
	3- Teaching the student how to formulate and ask questions through			
	the teacher's words.			
	4- Understanding current applications of solid state physics and			
	exposure to new horizons of applications			

10. Course Structure					
Week	Hours	Required Learning	Unit or	Learning	Evaluation
		Outcomes	subject name	method	method
1,2	6	1.1.Introduction	Super		Discussion
		2.1.Superconductivity	conductor	The main	And collectivism
		3.1. General properties		method is a	Duties Exams, The
		of superconductor		combination	duick one Exams Editorial search
		4.1.Missiner Effect		of lecture- based	Assigning the
		5.1. Critical Tempera		methodsWhic	student to
		-ture , Field, Current	9111	h elocution	place of the
		6.1. Type I and type		explanation	professor
		II superconductors		And	
3,4	6	7.1. Differences		Interactive	
		between type I and		Discussion	
		Type II superconductor		Between the teacher And	
		8.1. Penetration depth		students	
		Summary		Involving all	
		Glossary of		educational	2.9
		Important Terms		process	
		Review Question			
		Problems			
5		Quiz		1	•
		9.1 BCS Theory			2
5,6	6	10.1 Brothers			
		London's Equation			
		11 1 Cooper Paries		1	
		12.1 Fiux quantization f			
		13.1 Critical parame		15	1
		-ter of super		51	
		conductor			
		14.1.Effect of			
		Magnetic Field			
		15.1 Effect of Current			
7,8	6	16.1.Isotopic Effect			
		17.1.Josephson Effect			
		Summary			
		Review Ouestion			
		Solve Problems			
_		Ouiz			
9,10	6	2.1. Introduction	Magnetic		

	الموصل العلوم الفيزياء	جامعة كلية قسم	
11,12 6	2.2.Original Phenome -non of Magnetism 2.3. Classification of Magnetic Material 2.4. Hound Rule 2.5. Langvan's Theory for Diamagnetic 2.6. Quantum Theory for Paramagnetic 2.7.Paramagnetic Susceptibility of conduction electrons 2.8.Propertiesof Ferromagnetic material 2.9.Properties-of Antiferromagnetic Material Summary Review Question Solve Problems Quiz 3.1.Introduction 3.2.Different between Dielectric and conductor 3.3.Behaviour-of dielectrics in electric field 3.4. Non- polar dielectrics 3.5.Polar electrics	Properties of Material	
13,14 6	3.6.Dielectric polarization 3.7.Dielectric constant 3.8. Three electric		

عة الموصل لية العلوم م الفيزياء	جام کا		
Vector and their15relation3.9. Boundarycondition at the3dielectric surfaceSummaryReview questionSolve Problems11.Course Evaluation	Semiconduct Device		
Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, reports etc 12.Learning and Teaching Resources Required textbooks (curricular books, if any)			
Main references (sources) Recommended books and references (scientific journals, reports)	 Introduction to Superconductivity, Second Edition by Michale Tankham, 2004. Superconductivity An Introduction By, Roland Combescot 2022 		
Electronic References, Websites			

Lecturer Name	Mohammed Khayri Zeki Abed
Subject Name	Mathematical Physics
Academic Year	2023- 2024
Credit Hours	3

Students do study the following fields:

6. Vector Analysis, Coordinate Systems.

- 7. Tensor Analysis.
- 8. Group Theory, Gamma and Beta Functions.
- 9. Matrices.
- 10. Gamma and Beta Functions
- 11. Function of complex variable Calculus and Residues.
- 12. Laplace Transformation, Fourier Series, Fourier Transform , Integral Transform.

Course Outcomes:

3. Learn mathematics and how to use in physics.

First Semester

Weekly Teach	ning Plan	
Week 1, 2 <mark>(3-9-2023</mark>)	Topics Covered : Vectors : (addition, multiplication, associatation, etc.), Scalar, Vector Dot Product, Vector Cross Products, Triple Scalar and Triple Vector Product, (examples), Differentiation of Vectors, Directional Derivative, Gradient, Divergence, Curl, Successive applications of ∇ . (Questions for Practices)	
Week 3,4	Topics Covered :Vector Integration(line, surface & volume integrals), Stock's Theorem, Gauss's Theorem, Potential Theory, Curvilinear Coordinates, Differential Operator, cylindrical, Spherical coordinates and their Transformations, (Examples and Solved Problems)	
	First Quiz	
Week 5,6	Topics Covered : Tensor Analysis: Covariant & Contravariant Tensors, Coordinates Transformations, Algebra Operations, Quotient Law, Fundamental Properties of Tensors, Symmetric and Anti-symmetric Tensors, Kronecker Tensor, pseudo Scalar and Tensors, Eigen values and Eigen vectors of second ordered Tensor, Dirac Delta Function.	
Week 7,8	Topics Covered: Group Theory : Group Axioms(definition), Subgroups, classes, Symmetry Operations, Matrix Representation of Group, Examples of Groups, types of Groups, Irreducible Representations of groups (examples)	
2	Second Quiz	
Week 9,10	Topics Covered: Matrices: Matrix Algebra, Type of matrices, Determinants, Inverse and Related Matrices, Elementary Transformations, Eigen values and Eigen vectors, Diagonalization of matrices, Functions of Matrices (examples)	
Week 11,12	Topics Covered: Gamma and Beta Functions, Relation Between Beta and Gamma Functions (examples and Solved Problems)	
	Third Quiz	
Week 12, 13	Topics Covered : Functions of complex Variables: Complex numbers(review), limits, continuity and derivatives, Demoivers Theorem, Powes, Roots, Analytic Function, Cauchy Integral, Taylor's and Laurent's Theorems, Singularities, Calculus of Residues and Applications, Evaluation of real definite integral by contour, Integration Round unit circle.	
Week 14,15 (15-1-2024)	Topics Covered: Laplace Transformation, Fourier Series, Fourier Transform, Integral Transform.	
Course Final Term Exam		
	Second Quiz	

Computer Usage:

Teaching Techniques:

Assessment methods:

References (text book) :

- 1- Peter O'Neil, 2003, Advanced Engineering Mathematics, 5th Edition.
- 2- Arfken, G. 1973, Mathematical Methods for Physicist (2nd ed.; Cambridge, MA: Academic Press).
- 3- Dass, H., K., 2009, Mathematical Physics , S. Chand ,India.

جامعة الموصل كلية العلوم قسم الفيزياء

