                                                                                                                                                     Introduction   
The goal of  physics is to provide an understanding of the physical world by developing theories based on experiments. A physical theory is essentially a guess, usually expressed mathematically, about how a given physical system works. The theory makes certain predictions
about the physical system which can then be checked by observations and experiments. If the
predictions turn out to correspond closely to what is actually observed, then the theory
stands, although it remains provisional. No theory to date has given a complete description of
all physical phenomena, even within a given subdiscipline of physics. Every theory is a work in
progress.
The basic laws of physics involve such physical quantities as force, velocity, volume, and
acceleration, all of which can be described in terms of more fundamental quantities. In mechanics, the three most fundamental quantities are length (L), mass (M), and time (T); all
other physical quantities can be constructed from these three.
1.1 STANDARDS OF LENGTH, MASS, AND TIME
To communicate the result of a measurement of a certain physical quantity, a unit
for the quantity must be defined. For example, if our fundamental unit of length is
defined to be 1.0 meter, and someone familiar with our system of measurement reports that a wall is 2.0 meters high, we know that the height of the wall is twice the
fundamental unit of length. Likewise, if our fundamental unit of mass is defined as
1.0 kilogram, and we are told that a person has a mass of 75 kilograms, then that
person has a mass 75 times as great as the fundamental unit of mass.
In 1960, an international committee agreed on a standard system of units for
the fundamental quantities of science, called SI (Système International). Its units
of length, mass, and time are the meter, kilogram, and second, respectively
 Length
In 1799, the legal standard of length in France became the meter, defined as one tenmillionth of the distance from the equator to the North Pole. Until 1960, the official
length of the meter was the distance between two lines on a specific bar of platinumiridium alloy stored under controlled conditions. This standard was abandoned for
several reasons, the principal one being that measurements of the separation between the lines are not precise enough. In 1960, the meter was defined as 1 650
763.73 wavelengths of orange-red light emitted from a krypton-86 lamp. In October
1983, this definition was abandoned also, and the meter was redefined as the          
distant  traveled by light in vacuum during a time interval of 1/299 792 458 second. This latest definition establishes the speed of light at 299 792 458 meters per second.

Mass
The SI unit of mass, the kilogram, is defined as the mass of a specific platinum iridium alloy cylinder kept at the International Bureau of Weights and Measures at
Sèvres, France (similar to that shown in Figure 1.1a). As we’ll see in Chapter 4,   
mass is a quantity used to measure the resistance to a change in the motion of an
object. It’s more difficult to cause a change in the motion of an object with a large
mass than an object with a small mass.

Time
Before 1960, the time standard was defined in terms of the average length of a solar day in the year 1900. (A solar day is the time between successive appearances of
the Sun at the highest point it reaches in the sky each day.) The basic unit of time,
the second, was defined to be (1/60)(1/60)(1/24) 1/86 400 of the average solar day. In 1967, the second was redefined to take advantage of the high precision
attainable with an atomic clock, which uses the characteristic frequency of the
light emitted from the cesium-133 atom as its “reference clock.” The second is now
defined as 9 192 631 700 times the period of oscillation of radiation from the
cesium atom. The newest type of cesium atomic clock is shown in Figure 1.1b
     [image: ] 
[image: ]
[bookmark: _GoBack][image: ]
[image: ]
[image: ] 



[image: ] [image: ]
[image: ][image: ]

[image: ] [image: ] [image: ] [image: ] [image: ]
[image: ] [image: ] [image: ] [image: ]
image4.png
Approximate Values for Length, Mass, and Time Intervals
Approximate values of some lengths, masses, and time intervals are presented in
Tables 1.1, 12, and 1.3, respectively. Note the wide ranges of values. Study these
tables 1o get a fecl for a kilogram of mass (this book has a mass of about
2 kilograms), a time interval of 1017 seconds (one century is about 3 X 10% seconds),
or two meters of length (the approximate height of a forward on a basketball
team). Appendix A reviews the notation for powers of 10, such as the expression of
the number 50 000 in the form 5 X 10,

Systems of units commonly used in physics are the Systéme International, in
which the units of length, mass, and time are the meter (m). kilogram (kg). and sec-
ond (s); the cgs, or Gaussian, system, in which the units of length, mass, and time
are the centimeter (cm), gram (g), and second; and the US. customary system,
which the units of length, mass, and time are the foot (f), shug, and second. ST units
are almost universally accepted in science and industry, and will be used throughout
the book. Limited use will be made of Gaussian and U_S. customary units.

TABLE 1.3

TABLE 1.2

‘Approximate Values of Some
Masses

Mam (k)
Obmervable T 10%

Universe

Milky Way galaxy 7% 100
Sun 2% 10%
Earth 6 10
Moon 7x 102
Shark 1x 10t
Human 7x 10
Frog 1x 1070
Mosquito 1x 1078
Bacterium 1x 1078
Hydrogenatom 2 X 107
Electron 9x 109

Approximate Values of Some Time Intervals

Tome Tnterval (5]

Age of Universe X 107
Age of Earth 1x 107
Average age of college student 6x 10

One year 3107

One day (time required for one revolution of Earth about it axis) 9x 100

Time between normal heartbeats sx107
Period? of audible sound vaves 1x 1078
Period? of typical radio waves 1x 1070
Period? of vibration of atom in solid 1x 10788
Period? of vsible light waves 2% 1071
Duration of nuclear collsion 1x 107
Time required fo light t travel across a proton 3 1072

Yo P o S P Sp———




image5.png
TABLE 1.4

Some Prefixes for Powers of

Ten Used with “Metric”
(Sl and cgs) Units
Abbreviation
.
»
10 e n
107 mico p
107 mili W
107 i c
107 dec d
00 deka da
10 ke
10 meg M
0 g G
02 e T
00 pew P
00 e E

Some of the most frequently used “metric” (SI and cgs) prefixes representing
powers of 10 and their abbrevitions are lised in Table 1.4 For example, 10~ m s
equivalent 0 1 millimeter (mm), and 10% m is 1
equal 1o 10° g, and 1 megavolt (MV) is 10 volss (V).

1.2 THE BUILDING BLOCKS OF MATTER

A Lkg (=21b) cube of solid gold has a length of about 3.73 cm (=15 in.) on a
side. Is this cube nothing but wallowall gold. with no empty space? If the cube is
cutin half, the two resulting picces retain their chemical identity as solid gold. But
what if the pieces of the cube are cut again and again, indefinitely? Will the
smaller and smaller pieces always be the same substance, gold? Questions such as
these can be traced back 1o early Greek philosophers. Two of them—Leucippus
and Democritus—couldn’t accept the idea that such cutting could go on forever.
‘They speculated that the process ultimately would end when it produced a particle:
that could no longer be cut. In Greek, atomos means “not sliceable.” From this
term comes our English word atom, once believed to be the smallest, ultimate par-
ticle of matter, but since found to be a composite of more elementary particles.

‘The atom can be visualized as a miniature Solar System, with a dense, positively
charged nucleus occupying the position of the Sun, with negatively charged elec-
trons orbiting like planets. This model of the atom, first developed by the great
Danish physicist Niels Bohr nearly a century ago, led to the undersianding of cer-
tain properties of the simpler atoms such as hydrogen, but failed to explain many
fine details of atomie structure.

Notice the size of a hydrogen atom, listed in Table 1.1, and the sze of a proton—
the nucleus of 2 hydrogen atom—one hundred thousand times smaller. If the pro-
ton were the size of a Ping Pong ball, the electron would be a tiny speck about the
size of a bacterium, orbiting the proton a kilometer away! Other atoms are similarly
constructed. So there is a surprising amount of empty space in ordinary mater.

After the discoery of the nucleus in the carly 1900s, questions arose concerning
its structure. Is the nucleus a single particle or a collection of particles? The exact
composition of the nucleus hasn't been defined completely even today, but by the
carly 1930 a model evolved that helped us understand how the nucleus behaves.
Scientists determined that two basic entities—protons and neutrons—oceupy the
nucleus. The fmion is nature’s fundamental carrier of positive charge (equal in
magnitude but opposite in sign o the charge on the electron), and the number of
protons in a nucleus determines what the element is. For insiance, a nucleus cor
aining only one proton is the nucleus of an atom of hydrogen, regardless of how
many neutrons may be present. Exira neutrons correspond to different isotopes of
hydrogen—deuterium and tritium—which react chemically in exactly the same way
as hydrogen, but are more massive. An atom having two protons in its nucleus, simi-
larly is always helium, although again, differing numbers of neutrons are possible.

The existence of neutrons was verified conclusively in 1932. A neutron has no,
charge and has a mass about equal to that of a proton. One of its primary pur-
poses s t0 act as a “glue” to hold the nucleus together. If neutrons were not pres-
ent, the repulsive electrical force between the positively charged protons would
cause the nucleus to fly apart.

‘The division doesn't stop here; it turns out that protons, neutrons, and a 200 of
other exotic particles are now thought 1o be composed of six particles called
quarks (thymes with “forks.” though some rhyme it with “sharks"). These particles
hase been given the names i, doun, strangs, chay, botton, and to). The up, char,
and top quarks cach carry a charge equal to + that of the proton, whereas the
down, strange, and bottom quarks each carry a charge equal to =} the proton
charge. The proton consists of two up quarks and one down quark (see Fig. 1.9),
giving the correct charge for the proton, + 1. The neutron is composed of two
down quarks and one up quark and has a net charge of zero.

‘The up and down quarks are sufficient to deseribe all normal matier, so the,
existence of the other four quarks indirectly observed in high-energy experiments,
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structure. Many physicists believe that the most fundamental particles may be tiny
loops of vibrating string,

1.3 DIMENSIONAL ANALYSIS

In physics, the word dimension denotes the physical nature of a quantity. The
distance between two points, for example, can be measured in feet, meters, or
furlongs, which are different ways of expressing the dimension of lengih.

‘The symbols that we use in this section to specify the dimensions of length, mass,
and time are L, M, and T, respeciively. Brackets [ 1 will ofien be used to denote the
dimensions of  physical quantity. For example, in this notation the dimensions of
velocity o are written [¢] = L/T, and the dimensions of arca A are [A] = L%. The
dimensions of area, volume, velocity, and acceleration are listed in Table 1.5, along
with their units in the three common systems. The dimensions of other quantities,
such as force and energy, will be described later as they are introduced.

In physics, it’s ofen necessary either 1o derive a mathemarical expression or
equation or to check its correctness. A useful procedure for doing this is called di-
‘mensional analysis, which makes use of the fact that dimensions can be treated as
algebraic quantities. Such quaniities can be added or subtracted only if they have
the same dimensions. It follows that the terms on the opposite sides of an equation
‘must have the same dimensions. If they don’s, the equation is wrong. If they do,
the equation is probably correct, except for a possible constant factor.

“To illustrate this procedure, suppose we wish 10 derive a formula for the distance
xtraveled by a car in a time if the car starts from rest and moves with constant ac-
celeration . The quantity x has the dimension length: [x] = L. Time & of course,
has dimension [1] = T. Acceleration is the change in velocity v with time. Since v has
dimensions of length per unit time, or [o] = L/T, acceleration must have dimen-
sions [a] = L/T%. We organize this information in the form of an equation:

Dol _L/T_ L _ s
[T

TABLE 1.5
Dimensions and Some Units of Area, Volume, Velocity, and Acceleration
System Arca (D) Volume (I5)  Velocity (L/T)  Acceleration (L/T5
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This i not quite correct, however, because there’s a constant of proportionalit
a simple numerical factor—that can't be determined solely through dimensiona
analyss. As will be seen in Chapter 2, it tums out that the correction expression i
Y= dart

‘When we work algebraically with physical quaniitis, dimensional analyss allow
us t0 check for errors in calculation, which often show up as discrepancies in units
£, for example, the lefichand side of an equation is in meters and the right-han
sideisin meters per second, we know immediately that we've made an error.

EXAMPLE 1.1 Analysis of an Equation

Goal  Check an equation using dimensional analysi.

Problem  Show that the expression v= 1, + a, is dimensionally correct, where v and = represent velocities, a
acceleration, and fis a time interval.

Strategy Analyze each term, finding its dimensions, and then check 1o see if all the terms agree with each other.

Solution L
Find dimensions for vand [ = [l =

L L
Find the dimensions of at ) =5 (T) ==

Remarks Al the terms agree, so the equation is dimensionally correct.

Exercise 1.1
Determine whether the equation x = vi? is dimes
all constant of proportionality.

nally correct. If not, provide a correct expression, up to an over

Answer Incorrect. The expression x = uris dimensionally correct

EXAMPLE 1.2 Find an Equation

Goal Derive an equation by using dimensional analyss.

Problem  Find a relationship between a constant acceleration a, speed v, and distance r from the origin for a par
cle traveling in a circle

Strategy Start with the term having the most di o Find its dimensions, and then rewrite those dimen
sions in terms of the dimensions of vand 1. The dimensions of time will have o be eliminated with = since that’s th
only quantity in which the dimension of time appears

Solution
Write down the dimensions of a [al =

Solve the dimensions of speed for T:

Substitute the expression for T into the equation for
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Substitute L = [], and guess at the equation: [a)

Remarks This s the correct equation for centripetal acceleration—acceleration towards the center of motion—1o.
be discussed in Chapter 7. There isn't any need in this case, to introduce a numerical factor. Such a factor is ofien
displayed explicilly as a constant k in front of the righthand side—for example, a = kv%/r. As it tuns out, k
gives the correct expression.

Exercise 1.2
In physics, energy E carries dimensions of mass times length squared, divided by time squared. Use dimensional
analysis to derive a relationship for energy in terms of mass m and speed v, up 10 a constant of proportionality. Set
the speed equal 10 ¢ the speed of light, and the constant of proportionality equal to 1 to get the most famous equa-
tion in physics.

Answer E=kmo? — E=mewhen k=1and
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1.4 UNCERTAINTY IN MEASUREMENT
AND SIGNIFICANT FIGURES

Physics s a sience in which mathematical laws are tested by experiment. No physi
cal quantity can be determined with complete accuracy, because our senses are
physically limited. even when extended with microscopes, cyclotrons, and other
gadgers.

Knowing the experimental uncertainties in any measurement is very importan.
Without this information, litle can be said about the final measurement. Using a
erude scale, for example, we might find that a gold nugget has a mass of 3 kilo-
grams. A prospective client interested in purchasing the nugget would naturally
want to know about the accuracy of the measurement, to ensure paying  fair
price. He wouldn't be happy to find that the measurement was good only to within
a kilogram, because he might pay for three ilograms and get only two. Of course,
he might get four kilograms for the price of three, but most people would be hesi.
fant to gamble that an error would tm out in their favor

Accuracy of measurement depends on the sensitiity of the apparatus, the skill
of the person carrying out the measurement, and the number of times the mea-
surement is repeated. There are many ways of handling uncertainties, and here
we'll develop a basic and reliable method of keeping track of them in the measure-
‘ment tself and in subsequent calculations.

Suppose that in a laboratory experiment we measure the area of a rectangular
plate with a meter stick. Let's assume that the accuracy o which we can measure a
particular dimension of the plate is +0.1 cm. If the length of the plate is mea-
sured 1o be 16.3 cm. we can claim only that i lics somewhere between 16.2 cm
and 16.1 cm. In this case, we say that the measured value has three significant fig-
ures. Likewise, if the plate’s width is measured to be 4.5 em, the actual value lies
between 4.4 cm and 4.6 cm. This measured value has only two significant figures.
We could write the measured values as 163 = 0.1 cm and 4.5 = 0.1 cm. In gen-
eral, a significant figure is a reliably known digit (other than a zero used to locate
a decimal point)

Suppose we would like to find the area of the plate by multiplying the o mea-
sured values together. The final value can range between (163 — 0.1 cm) (15 —
0.1 cm) = (162 cm) (4.4 cm) = 7128 cm? and (163 + 0.1 em) (45 + 0.1 em)
(16,1 cm) (46 cm) = 75.44 em?. Climing to know anything about the hundredhs
place, or even the tenths place, docsn't make any sense, because it's clear we
can't even be certain of the units place, whether it's the 1 in 71, the 5
somewhere in between. The tenths and the hundredihs places are clearly not
significant. We have some information about the units place, so that number is
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significant. Multiplying the numbers at the middle of the uncertainty ranges gives
(16.3 cm) (4 cm) em?, which is also in the middle of the area’s uncer-
tainty range. Since the hundredths and tenths are not significant, we drop them
and take the answer to be 73 cm?, with an uncertainty of 2 cm?. Note that the
answer has two significant figures, the same number of figures as the least accu-
rately known quantity being multiplied, the 4.5-cm width.

There are two useful rules of thumb for determining the number of significant
figures. The first, concerning multiplication and division, s as follows: In multiply-
ing (dividing) two or more quantities, the number of siguificant figures in the final
product (quotient) is the same as the number of significant figures in the least
accurate of the factors being combined, where least accurate means having the lowest
number of significant figures.

To get the final number of significant figures, it's usually necessary to do some.
rounding. If the last digit dropped is less than 5, simply drop the digit. If the last
digit dropped s greater than or equal to 5, raise the last retained digit by one.

EXAMPLE 1.3 Installing a Carpet
Goal  Apply the multplication rule for significant figures.

Problem A carpet s to be installed in a room of length 12.71 m and width 3.46 m. Find the area of the room,
retaining the proper number of significant figures.

Strategy Count the significant figures in each number. The smaller result is the number of significant figures in
the answer.

Solution
Count significant figures: 1271m — 4significant figures

346m — 3 significant figures
Multiply the numbers, keeping only three digits 1271 m X 346 m = 439766 m*> — 440 m?

Remarks In reducing 43976 6 to three significant figures, we used our rounding rule, adding 1 to the 9, which
‘made 10 and resulted in carrying 1 1o the unit’s place.

Exercise 1.3
Repeat this problem, but i

a room measuring 9.72 m long by 5.3 m wide.

Answer 52 m?

—_— Zeros may or may not be significant figures. Zeros used 1o position the decimal
1.1 Using Calculators point in such numbers as 0.03 and 0.007 5 are not significant (but are useful in
Calcuttors were designed by engi- avoiding ervors). Hence, 0.03 has one significant figure, and 0.007 5 has two.

meers toield s many i When zeros are placed after other digits in a whole number, there is a possibility
ey ot cleltor b o it exprecation. For example, suppose the mase of an object i given 2 1500
e et This e s ambiguous, becaie we don know whether the it o 70108 are b

ing used to locate the decimal point or whether they represent significant figures in
the measurement

Using scientific notation to indicate the number of significant figures removes
this ambiguity. In this case, we express the mass as 1.5 X 10% g if there are two sig-
nificant figures in the measured value, 1.50 X 103 g if there are three significant
figures, and 1500 X 10% g if there are four. Likewise, 0.000 15 s expressed
entific notation as 1.5 X 10~ if it has two significant figures or as 150 X 107
has three significant figures. The three zeros between the decimal point and the
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here because the answer has five significant figures even though one of the terms
in the sum, 0.000 3, has only one significant figure. Likewise, if we perform the
subtraction 1.002 = 0.998 = 0.004, the result has three decimal places because
cach term in the subtraction has three decimal places.

To show why this rule should hold, we return to the first example in which we
added 123 and 535, and rewrite these numbers as 123 vex and 5.35x. Di
ten with an x are completely unknown and can be any digit from 0 to 9. Now we
line up 123.xxx and 5.35x relative 10 the decimal point and perform the addition,
using the rule that an unknown digit added to a known or unknown digit yields an
unknown:

125000
+

128,000

‘The answer of 128.xxx means that we are justified only in keeping the number 128
because everything after the decimal point in the sum is actually unknown. The
example shows that the controlling uncertainty is introduced into an addition or
subtraction by the term with the smallest number of decimal places.
In performing any calculation, especially one involving a number of steps, there
will always be slight discrepancies introduced by both the rounding process
ic order in which steps are carried out. For example, consider
‘This computation can be performed in three different orders.
89 = 13,842, which rounds to 13.8, followed by 13.8/157
7516, which rounds to .75, re-
sulting in 235 X 3.75 = 8.8125, rounding to 881. Finally, 2.35/1.57 = L4968
rounds to 150, and 1.50 X 589 = 8,835 rounds to 8.84. So three different alge-
braic orders, following the rules of rounding, lead to answers of 8.79, 8.81, and
884, respectively. Such minor discrepancies are to be expected, because the last
igit s only one representative from a range of possible values, depend-
ing on experimental uncertainty. The discrepancies can be reduced by carrying
one or more extra digits during the calculation. In our examples, howeves
‘mediate results will be rounded off to the proper number of significant figures,
and only those digits will be carried forward. In experimental work, more sophi
cated techniques are used o determine the accuracy of an experimental result.

First, we have 235
87808, rounding to 8.79. Second, 5.89/1.57

1.5 CONVERSION OF UNITS
‘Sometimes it's necessary to convert units from one system to another. Conversion
factors between the ST and U.S. customary systems for units of length are as follows

Lmile = 1609 m = 1.609 km 30.48 cm
1m=3937in = 3281 lin.=00254m=25icm

Amore extensive list of conversion factors can be found on the inside front cover
of this book.
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Units can be treated as algebraic quantities that can “cancel” each other. We
can make a fraction with the conversion that will cancel the units we don’t want,
and multiply that fraction by the quantity in question. For example, suppose we
want to convert 15.0 in. to centimeters. Because | in. = 2.54 cm, we find that

251am
i)

15.0in.

o x

i b

&l

The next two examples show how to deal with problems involving more than
“This roud sign near Ralegh, North

Caroin, s ditanees i miles one conversion and with povers
and Klometers. How ccurate are the

EXAMPLE 1.4 Pull Over, Buddy!

Goal - Convert units using several conversion factors.
Problem  Ifa car s traveling at a speed of 25.0 m/s,is it exceeding the speed limit of 55.0 mi/h

Strategy Meters must be converted to miles and seconds to hours, using the conversion factors listed on the inside
front cover of the book. This requires two or three conversion ratios.

Solution
Convert meters to miles: 250m/s= (2
Convert seconds to hours: 174 X 102 mi/s

= 626mi/h

Remarks The driver should slow down because he's exceeding the speed |
single conversion relationship 1.00 m/s = 2.24 mi/h:
P

S

it. An alternate approach s o use the

294 mi/h
100/

) 62.7 mi/h

Answers o conversion problems may differ slightly, as here, due to rounding during intermediate steps.

Exercise 1.4
Convert 152 mi/h to m/s.

Answer 68.0m/s

EXAMPLE 1.5 Press the Pedal to the Metal

Goal - Comverta quantity featuring powers of a unic

Problem The traffc light tums green, and the driver of a high-performance car slams the accelerator to the floor.
‘The accelerometer registers 22.0 m/s?. Convert this reading to kin/min?.

Strategy Here we need one factor to convert meters to kilometers and another two factors to convert seconds
squared to minutes squared.

Solution
Insert the necessary factors:

0
100

100 km )( 6005
00 X 1053 )\ .00
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Remarks Notice that in cach consersion factor the numerator equals the denominator when units are taken into
account. A common error in dealing with squares s to square the units inside the parentheses while forgetting to
square the numbers!

Exercise 1.5
Convert 450 X 10° kg/m® to g/cm.

Answer 450 g/cm’
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Solution
Compute the approximate volume Vg of the local group Vi = §m ~ (10°1y)3 = 10151y%
of galaxies:
Compute the number of galaxies per cubic light year _ Fof galaxies
Vie
_dogavies 1 galasies
1051y iy
Compute the approximate volume of the obscrvable V, =t~ (10013 = 10913

it deniy o il by 1. P— A

W
= (nn-ws"l’y"%)(mw %)

10" galaxies

Remarks Norice the approximate nature of the computation, which uses 47/3 ~ 1 on two occasions and 14 ~ 10
for the number of galasies in the local group. This is completely justificd: Using the actual mumbers would be point-
less, because the other assumptions in the problem—the size of the obscrvable universe and the idea that the local
galaxy density s representative of the density everywhere—are also very rough approximations. Further, there was
nothing in the problem that required using volumes of spheres rather than volumes of cubes. Despite all these arbi-
trary choices, the answer still gives usclul information, because it rules out a lot of reasonable possible answers. Be-
fore doing the caleulation, a guess of a billion galaxies might have seemed plausible.

Exercise 1.8
Given that the nearest star s about 4 light years away and that the galaxy is roughly a disk 100 000 light years across
and a thousand light years thick, estimate the number of stars in the Milky Way galaxy.

Answer ~ 10" suas (Estimates will vary. The actual answer is probably close t0 4 X 1011 stars.)

1.7 COORDINATE SYSTEMS

Many aspects of physics deal with locations in space, which require the definition
of a coordinate system. A point on 2 line can be located with one coordinate, a
pointin a plane with two coordinates, and a point in space with three.

A coordinate system used to specify locations in space consists of the following:

= Afixed reference point 0, called the origin
= Asetof specified axes, or directions, with an appropriate scale and labels on the
& Instructions on labeling a point in space relative to the origin and axes

)

One convenicnt and commonly used coordinate system is the Cartesian coor-
dinate system, sometimes called the rectangular coordinate system. Such a sy 5
tem in two dimensions s illustrated in Figure 14. An arbitrary point in this |3} Lo
system is labeled with the coordinates (x, y). For example, the point P in the

figure has coordinates (5, 3). If we start at the origin 0, we can reach P by mov- )

ing 5 meters horizontally to the right and then 3 meters vertically upyards. In -
the same way, the point Q has coordinates (3, 4), which corresponds to going 3

meters horizontally to the left of the origin and 4 meters vertically upwards from
there.

Figure 14 Desiguaton of poiats
i3 o dimensional Cantesiai coor-
dinate sptem, Every point s labeled
ith coordinates (5, 3).
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Positive xis usually selected as right of the origin and positive y upward from the
origin, butin two dimensions this choice i largely a matter of taste. (In three dimen-
sions, however, there are “righthanded” and “lefthanded” coordinates, which lead
1o minus sign differences in certain operations. These will be addressed as needed.)

Sometimes it’s more convenient (o locate a point in space by its plane polar co-
ordinates (7, ), as in Figure 15. In this coordinate system, an origin 0and a refer-
ence line are selected as shown. A point is then specified by the distance r from
the origin to the point and by the angle 0 between the reference line and a line
drawn from the origin to the point. The standard reference line s usually selected
10 be the positive x-axis of a Cartesian coordinate sysiem. The angle 6 is con-
sidered positive when measured counterclockwise from the reference line and
negative when measured clockwise. For example, if a point s specified by the po-
lar coordinates 3 m and 60°, we locate this point by moving out 3 m from the ori-
gin at an angle of 60° above (counterclockwise from) the reference line. A point
specified by polar coordinates 3 m and  60° is located 3 m out from the origin
and 60° below (clockwise from) the reference line.

1.8 TRIGONOMETRY

Consider the right wiangle shown in Active Figure 1.6, where side y is opposite the
angle 6, side vis adjacent 1o the angle 6, and side ris the hypotenuse of the trian-
gle. The basic wigonomeric functions defined by such a triangle are the ratios of
the lengths of the sides of the triangle. These relationships are called the sine
(sn), cosine (cos), and tangent (an) functions. In terms of 6, the basic trigono-
metric functions are as follows:!

g = Sdeopposite 0 _ 3

Dypotemuse 1

cosg = Sdeadicentios _ x "
Bypotenuse B

g = S Opposite @ __ 3

Sde adjacent 08 x

For example, if the angle @ s equal (0 30°, then the ratio of y to ris always
tha s, sin 30° = 0.50. Note that the sine, cosine, and tangent functions are quant
ties without units because each represents the ratio of two lengths.

Another important relationship, called the Pythagorean theorem, exists be-
teeen the lengths of the sides of a right triangle:

EEE 2

Finally, it will often be necessary tofind the values of inverse relationships. For ex-
ample, supposc you know that the sine of an angl is 0.866. but you need to know
the value of the angle itelf. The inverse sine function may be expressed as
in™1(0.866), which is 2 shorthand way of asking the question “What angle has a sine
of 0.866" Punching a couple of buttons on your calculator reveals that this angle is
60.0°. Try it for yourself and show that tan~"(0.100) = 218" Be sure that your calcu-
Jator s set for degrees and not radians. In addition, the inverse tangent funcion can
xetun only values between = 90° and + 907, so when an angle is in the second or
third quadrant, it necessary 10 add 1807 1o the answer in the caleulator window

The definitions of the trigonometric functions and the inverse trigonometric
functions, as well as the Pythagorean theorem, can be applied to any right riangle,
regardless of whether tssides correspond to x. and y-coordinates.

These results from trigonometry are useful in converting from rectangular co-
ordinates o polar coordinates, or vice versa, as the next example shows

N
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EXAMPLE 1.9 Cartesian and Polar Coordinates

Goal Understand how to convert from plane rectangular

ACTIVE FIGURE 1.7

Y
coordinates o plane polar coordinates and vice versa (Exampl 1) Comverin
rinates o plane polar coordinates and rom s coorbngs
o cooninaen
Problem () The Cartesian coordinates of a point in the 0 e
syplane are (vy) = (=350, —250)m, as shown in s Physics(INow™ Logino
Active Figure 1.7. Find the polar coordinates of his point. ‘, P st veecpTe.com
() Comvert (1, 6) = (500 m, 37.0% to rectangular coordinates. (3.3 2 50) ndgoso Acie Figure L71o
TITIT and s how s Cartsian and
Strategy Apply the trigonometric functions and their pola coodinates change

inverses, together with the Pythagorean theorem.

Solution
(@) Cartesian to Polar

‘Take the square root of both sides of Equation 1.2 to.
find the radial coordinate:

VE+ R = (=350 m) + (-250m)® = 430m

Use Baquaion 11 fo the tangent fncion toind the g = L= T2 o1,
angle with the inverse tangent, adding 180° because the x o TRA0m
angle is actually in third quadrant: 6= tan™!(0.714)

(b) Polar to Cartesian

Use the wigonomeic definitions, Equation 1.1 (5,00 m) cos 37.0° = 399m

00 m) sin 37.0° = 301 m

Remarks When we take up vectors in two dimensions in Chapter 3, we will routinely use a similar process to find
the direction and magnitude of a given vector from its components, or, conversely, to find the components from the
vector's magnitude and direction.

Exercise 1.9
(@) Find the polar coordinates corresponding to (x.5)
sponding to (1, 6) = (4.00 m, 53.0°)

5, 1.50) m. (b) Find the Cartesian coordinates corre-

Answers (a) (r.0) =

358m, 1559 (b) (x) = (241 m, 3.19m)

EXAMPLE 1.10 How High Is the Building?
Goal - Apply basic resuls of rigonometry.

Problem A person measures the height of a building by walk-
ing out a distance of 46.0 m from its base and shining a flash-
light beam toward the top. When the beam is elevated at an an-
gle of 30.0° with respect to the horizontal, as shown in Figure
18, the beam just strikes the top of the building. Find the
height of the building and the distance the flashlight beam has
10 travel before it strikes the top of the building.

Strategy Refer to the right tiangle shown in the figure. We
Know the angle, 39.0%, and the length of the side adjacent to it.
Since the height of the building is the side opposite the angle,
we can use the tangent function. With the adjacent and oppo-
site sides known, we can then find the hypotenuse with the
Pythagorean theorem. Figure 18 (Example 110)
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Solution

Use the tangent ofthe given angle: an 50,00 = L
Wom
Solve for the height: Height = (tan 30.0°)(46.0 m) = (0.810) (16.0 m)
73m

N+ = VET3m)? + (160m)? = 592m

Find the hypotenuse of the triangle:

Remarks Inalater chapier,

ightriangle trigonomety is often used when working with vectors.

Exercise 1.10
High atop a building 50.0 m tll, you spot a friend standing on a sueet comer. Using a protractor and dangling a
plumb bob, you find that the angle between the horizontal and the direction of your friend is 25.0°. Your eyes are lo-
cated 1.75 m above the top of the building. How far away from the foot of the building is your friend?

Answer 111m
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R et (&) e Tationa) Sandarc RUogram No. SU, an accurate copy of The fniermationa St
dard Kilogram kept at Séves, France, s housed under 2 double belar in 2 vault at the National st
e of Saadasds und Technology. (b) The nation's priavar e tadare b a cesum fountain atomie
lock developed at the National nsiute of Stancards and Technology aboratoris in Boulder,
Colorado. This clock will neither gain nor lose 4 second in 20 million yeats.
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JABLE 1.1

Approximate Values of Some Measured Lengths

Distance from Earth to most remotc known quasar
Distance from Earth to most remote known normal galaxics

Distance from Earth to nearest lrge galaxy (M31, the Andromeda galasy)
Distance from Earth to neareststar (Proxima Centauri)

One light year
Mean orbit adivs of Earth about Sun
Mean distance from Earth to Moon
Mean radius of Earth

Typical altitude of satcllte orbiting Earth
Length of football ficld

Length of houscfly

Size of smallest dust particles

Size of cells in most lving organisms
Dismeter of hydrogen atom

Dismeter of atomic sucleus

Dismeter of proton





