Fluid Flow Equations
The fluid flow equations that are used to describe the flow behavior in a reservoir can take many forms depending upon the combination of variables presented previously, (i.e., types of flow, types of fluids, etc.). By combining the conservation of mass equation with the transport equation (Darcy’s equation) and various equations-of-state, the necessary flow equations can be developed. Since all flow equations to be considered depend on Darcy’s Law, it is important to consider this transport relationship first.
Darcy’s Law
 The fundamental law of fluid motion in porous media is Darcy’s Law. The mathematical expression developed by Henry Darcy in 1856 states the velocity of a homogeneous fluid in a porous medium is proportional to the pressure gradient and inversely proportional to the fluid viscosity. For a horizontal linear system, this relationship is: 
[image: ]
Darcy defined the proportionality constant “α” as the permeability of the rock and represented by “k”
[image: ]
Where: 
μ = apparent velocity, cm/sec 
q = volumetric flow rate, cm3 /sec 
A =total cross-sectional area of the porous medium, cm2 
μ = The fluid viscosity, centipoise units 
dp/dx = and the pressure gradient, atm/cm, taken in the same direction as ν and q. 
k = the permeability of the rock expressed in Darcy units.
The negative sign in Equation above is added because the pressure gradient is negative in the direction of flow as shown in Figure 1. For a horizontal-radial system, the pressure gradient is positive (see Figure 2) and Darcy’s equation can be expressed in the following generalized radial form:
[image: ]من الجدير بالذكر الإشارة الى ان Darcy’s Law الموجودة اعلاه لا تحتوي على معامل الانضغاطية علما ان المعادلة تتعامل مع موائع قابلة للانضغاط الى حد ما مثل النفط وكذلك الماء الا ان الحالة التي يجري فيها الماء هو steady state ولهذا لا نلاحظ وجود معامل الانضغاطية في المعادلة
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<0 meaning negative signal (-)
Figure 1 Pressure vs. distance in a linear flow.
[image: ]
Fgure 2 Pressure profile and gradient in a radial flow.
The cross-sectional area at radius r is essentially the surface area of a cylinder. For a fully penetrated well with a net thickness of h, the cross-sectional area Ar is given by:
[image: ]
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Steady-State Flow
 As defined previously, steady-state flow represents the condition that exists when the pressure throughout the reservoir does not change with time. The applications of the steady-state flow to describe the flow behavior of several types of fluid in different reservoir geometries are presented below. These include:

· Linear flow of incompressible fluids
· Linear flow of slightly compressible fluids
· Linear flow of compressible fluids
· Radial flow of incompressible fluids
· Radial flow of slightly compressible fluids
· Radial flow of compressible fluids
· Multiphase flow
Linear Flow of Incompressible Fluids
Fluids In the linear system, it is assumed the flow occurs through a constant crosssectional area A, where both ends are entirely open to flow. It is also assumed that no flow crosses the sides, top, or bottom as shown in Figure 3.
[image: ]
 If an incompressible fluid is flowing across the element dx, then the fluid velocity v and the flow rate q are constants at all points. The flow behavior in this system can be expressed by the differential form of Darcy’s equation, i.e., Equation above. Separating the variables of Equation above and integrating over the length of the linear system gives:
[image: ]
It is desirable to express the above relationship in customary field units, or:
[image: ]
the apparent velocity:
[image: ]
the actual fluid velocity:
[image: ]
where:
q=flow rate, bbl/day
k=absolute permeability, md
p=pressure, psia
μ= viscosity, cp
L= distance, ft
A= cross-sectional area, ft2
[image: ]
Figure 3 Darcy’s linear flow model

The difference in the pressure (p1–p2) is not the only driving force in a tilted reservoir. The gravitational force is the other important driving force that must be accounted for to determine the direction and rate of flow. The fluid gradient force (gravitational force) is always directed vertically downward while the force that results from an applied pressure drop may be in any direction. The force causing flow would then be the vector sum of these two. In practice, we obtain this result by introducing a new parameter, called fluid potential, which has the same dimensions as pressure, e.g., psi. Its symbol is Φ.
Letting Δzi be the vertical distance from a point i in the reservoir to this datum level.
[image: ]
where ρ is the density in lb/ft3.
Expressing the fluid density in gm/cc in Equation gives:
[image: ]
Where:
 Φi = fluid potential at point i, psi 
pi = pressure at point i, psi 
Δzi = vertical distance from point i to the selected datum level 
ρ = fluid density, lb/ft3 
γ = fluid density, gm/cm3. 

The datum is usually selected at the gas-oil contact, oil-water contact, or at the highest point in formation. In using Equations above to calculate the fluid potential Φi at location i, the vertical distance Δzi is assigned as a negative value when the point i is below the datum level and as a positive when it is above the datum level, i.e.: 
If point i is above the datum level:
[image: ]
If point i is below the datum level:
[image: ]
Applying the above-generalized concept to Darcy’s equation gives:
[image: ]
It should be pointed out that the fluid potential drop (Φ1 – Φ2) is equal to the pressure drop (p1 – p2) only when the flow system is horizontal.


Linear Flow of Slightly Compressible Fluids
Equation below describes the relationship that exists between pressure and volume for slightly compressible fluid,
[image: ]
The above equation can be modified and written in terms of flow rate as:
[image: ]
where qref is the flow rate at some reference pressure pref. Substituting the above relationship in Darcy’s equation gives:
[image: ]
Separating the variables and arranging:
[image: ]
Integrating gives:
[image: ]
Where:
qref = flow rate at a reference pressure Pref, bbl/day
p1 = upstream pressure, psi
p2 = downstream pressure, psi
k = permeability, md
μ = viscosity, cp
c = average liquid compressibility, psi–1
Selecting the upstream pressure p1 as the reference pressure pref and substituting in Equation above gives the flow rate at Point 1 as:
[image: ]
Choosing the downstream pressure p2 as the reference pressure and substituting in Equation 6-19 gives:
[image: ]
where q1 and q2 are the flow rates at points 1 and 2, respectively.








Linear Flow of Compressible Fluids (Gases) 
For a viscous (laminar) gas flow in a homogeneous-linear system, the real-gas equation-of-state can be applied to calculate the number of gas moles n at pressure p, temperature T, and volume V:
[image: ]
At standard conditions, the volume occupied by the above n moles is given by:
[image: ]
Combining the above two expressions and assuming Zsc = 1 gives:
[image: ]
Equivalently, the above relation can be expressed in terms of the flow rate as:
[image: ]
Rearranging:
[image: ]
Where:
q = gas flow rate at pressure p in bbl/day
Qsc = gas flow rate at standard conditions, scf/day
z = gas compressibility factor
Tsc, Psc = standard temperature and pressure in °R and Psia, respectively
Replacing the gas flow rate q with that of Darcy’s Law, i.e., Equation below:
[image: ]


gives:
[image: ]
The constant 0.001127 is to convert from Darcy’s units to field units. Separating variables and arranging yields:
[image: ]
Assuming constant z and μg over the specified pressures, i.e., p1 and p2, and integrating gives:
[image: ]
Where:
Qsc = gas flow rate at standard conditions, scf/day
k = permeability, md
T = temperature, °R
μg = gas viscosity, cp
A == cross-sectional area, ft2
L = total length of the linear system, ft
Setting psc = 14.7 psi and Tsc = 520 °R in the above expression gives:
[image: ]
It is essential to notice that those gas properties z and μg are a very strong function of pressure, but they have been removed from the integral to simplify the final form of the gas flow equation. The above equation is valid for applications when the pressure < 2000 psi. The gas properties must be evaluated at the average pressure p as defined below.

the average pressure pavg as given by

for applications when both P1 and P2 are more than 3000 psi.

When the bottom-hole flowing pressure and average reservoir pressure are both between 2000 and 3000 psi, the pseudopressure gas pressure.
Ψ (psi) method must be used (exact solution method, i.e. real gas potential solution), 
Note: This method (exact solution method ) applicable with all of pressure value.
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