4.1 The Pot Aquifer Model

The simplest model that can be used to estimate the water influx into a gas or oil reservoir is based on the basic definition of compressibility. The compressibility is defined mathematically as:


Applying the above basic compressibility definition to the aquifer gives: 
Water influx = (aquifer compressibility) (initial volume of water) (pressure drop) 
Or

Where: 
We = cumulative water influx, bbl 
CW = aquifer water compressibility, psi–1 
Cf = aquifer rock compressibility, psi–1 
Wi = initial volume of water in the aquifer, bbl 
Pi = initial reservoir pressure, psi 
p = current reservoir pressure (pressure at oil-water contact), psi 
Calculating the initial volume of water in the aquifer requires the knowledge of aquifer dimension and properties. These, however, are seldom measured since wells are not deliberately drilled into the aquifer to obtain such information. For instance, if the aquifer shape is radial, then:

Where: 
ra = radius of the aquifer, ft 
re = radius of the reservoir, ft 
h = thickness of the aquifer, ft 
ϕ = porosity of the aquifer 
Where the effective radius of the reservoir is expressed in terms of the reservoir  pore volume “VP” as given by:


Where reservoir pore volume “VP” is expressed in ft3. 
Following equation: 

 suggests that water is encroaching in a radial form from all directions. Quite often, water does not encroach on all sides of the reservoir, or the reservoir is not circular in nature. 
To account for these cases, a modification to equation below 

 must be made in order to properly describe the flow mechanism. One of the simplest modifications is to include the fractional encroachment angle f in the equation, as illustrated in Figure below 
	[image: ]

Figure shown, radial aquifer geometries.
to give:



where the fractional encroachment angle f is defined by:


The above model is only applicable to a small aquifer, i.e., pot aquifer, whose dimensions are of the same order of magnitude as the reservoir itself, (volume of reservoir ≈ volume of aquifer).

Dake (1978) points out that because the aquifer is considered relatively small, a pressure drop in the reservoir is instantaneously transmitted throughout the entire reservoir-aquifer system. Dake suggests that for large aquifers, a mathematical model is required which includes time dependence to account for the fact that it takes a finite time for the aquifer to respond to a pressure change in the reservoir.
Since the ability to use eq.

relies on knowledge of the aquifer properties, i.e., cw, cf, h, ra, and θ, these properties could be combined and treated as one unknown K in above equation, or:

Where the water influx constant K represents the combined pot aquifer properties as:

k=
Combining equation 


with equation

 
gives:

last equation indicates that a plot of the term F/Eo as a function of Δp/Eo would yield a straight line with an intercept of  N and slope of  K, as illustrated in Figure below:
[image: ]
Figure shown, F/Eo vs Δp/Eo
If a gas cap with a known value of m exists, equation 

can be expressed in the following linear form:

This form indicates that a plot of the term 𝐹/(𝐸𝑜+𝑚𝐸𝑔) as a function of Δ𝑝/(𝐸𝑜+𝑚𝐸𝑔) would yield a straight line with an intercept of N and slope of K. as shown in following figure.



[image: ]
Figure shown 𝐹/(𝐸𝑜+𝑚𝐸𝑔)vs. Δ𝑝/(𝐸𝑜+𝑚𝐸𝑔)
· The Steady-State Model in the MBE 

The steady-state aquifer model as proposed by Schilthuis (1936) is given by:

where: 
We = cumulative water influx, bbl 
C = water influx constant, bbl/day/psi 
t = time, days 
pi = initial reservoir pressure, psi 
p = pressure at the oil–water contact at time t, psi 
Combining last equation with 

gives:

Plotting 𝐹/𝐸𝑜 vs. ∫(𝑝𝑖−𝑝)𝑑𝑡 /𝐸𝑜 to results in a straight line with an intercept that represents the initial oil-in-place N and a slope that describes the water influx constant C as shown in figure below.  And for a known gas gap; last equation can be expressed in the following linear form:
[image: ]


Plotting 𝐹/(𝐸𝑜+𝑚𝐸𝑔) vs. ∫(𝑝𝑖−𝑝)𝑑𝑡 /(𝐸𝑜+𝑚𝐸𝑔) to results in a straight line with an intercept that represents the initial oil-in-place N and a slope that describes the water influx constant C.
· The unsteady-state model in the MBE 
The van Everdingen and Hurst unsteady-state model is given by:

With:

Van Everdingen and Hurst presented the dimensionless water influx 𝑊𝑒𝑑 as a function of the dimensionless time 𝑡𝐷 and dimensionless radius 𝑟𝐷 that are given by:



where: 
t = time, days 
k = permeability of the aquifer, md 
𝜑 = porosity of the aquifer 
𝜇𝑤 = viscosity of water in the aquifer, cp 
𝑟𝑎 = radius of the aquifer, ft 
𝑟𝑒 = radius of the reservoir, ft 
𝑐𝑤 = compressibility of the water, psi-1 
Combining 

 with 

gives:

The proper methodology of solving the above linear relationship is summarized in the following steps. 
Step 1. From the field past production and pressure history, calculate the under-ground withdrawal F and oil expansion 𝐸𝑜. 
Step 2. Assume an aquifer configuration, i.e., linear or radial. 
Step 3. Assume the aquifer radius ra and calculate the dimensionless radius 𝑟𝑎. 
Step 4. Plot 𝐹/𝐸𝑜 vs. ( ΣΔ𝑝𝑊𝑒𝑑 )/𝐸𝑜 on a Cartesian scale. If the assumed aquifer parameters are correct, the plot will be a straight line with N being the intercept and the water influx constant B being the slope.
It should be noted that four other different plots might result. These are: 
1. Complete random scatter of the individual points, which indicates that the calculation and/or the basic data are in error. 
2 . A systematically upward-curved line, which suggests that the assumed aquifer radius (or dimensionless radius) is too small. 
3. A systematically downward-curved the indicating that the selected aquifer radius (or dimensionless radius) is too large. 
[bookmark: _GoBack]4. An S-shaped curve indicates that a better fit could be obtained if a linear water influx is assumed. 

Figure below shows a schematic illustration of the Havlena and Odeh
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