4.4. The Van Everdingen-Hurst Unsteady-State Model 
As long as the leading front of the pressure transient has not reached the outer boundaries of the reservoir, fluid flow toward the well is in the transient state, and the reservoir acts as if it is infinite in size in response to the well. 
During the transient flow phase, pressure distribution in the reservoir is not constant and depends on elapsed time and distance from the well.

The mathematical formulations that describe the flow of crude oil system into a wellbore are identical in form to those equations that describe the flow of water from an aquifer into a cylindrical reservoir, as shown schematically in figure below:
[image: ]

When an oil well is brought  on production at a constant flow rate after a shut-in period, the pressure behavior is essentially controlled by the transient (unsteady-state) flowing condition. This flowing condition is defined as the time period during which the boundary has no effect on the pressure behavior.
[image: ]
The dimensionless form of the diffusivity equation, is basically the general mathematical equation that is designed to model the transient flow behavior in reservoirs or aquifers. In a dimensionless form, the diffusivity equation takes the form:
[image: ]

Basic, radial flow equation (radial diffusivity equation):
the assumptions implicit in the derivation of the radial flow equation are that:
 - the formation is both homogeneous and isotropic 
- the central well is perforated across the entire formation thickness 
- the pore space is 100% saturated with any fluid.
Consider the flow through a volume element of thickness dr situated at a distance r from the center of the radial cell. Then applying the principle of mass conservation.
[image: ]
[image: ]
The volume of element
v=ᴫr2h
Derivation of both sides of the equation
dv=2ᴫrh dr
Where 2πrhφdr is the volume of the small element of thickness dr.
The left hand side of this equation can be expanded as:
[image: ]
which simplifies to
[image: ]
By applying Darcy's Law for radial, horizontal flow it is possible to substitute for the flow rate q in eq. (above 5.2)  since
[image: ]
giving
[image: ]
The time derivative of the density appearing on the right hand side of eq. (5.3) can be expressed in terms of a time derivative of the pressure by using the basic thermodynamic definition of isothermal compressibility
[image: ]


and since
[image: ]
then the compressibility can be alternatively expressed as
[image: ]
[image: ]

[image: ]
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Finally, substituting eq. (5.5) in eq. (5.3) reduces the latter to

[image: ]
Then
[image: ]
This is the basic, partial differential equation for the radial flow of any single phase fluid in a porous medium. The equation is referred to as non-linear because of the implicit pressure dependence of the density, compressibility and viscosity appearing in the coefficients kρ /µ and φ cρ. Because of this, it is not possible to find simple analytical solutions of the equation without first linearizing it so that the coefficients somehow lose their pressure dependence.
The Linearization Of Equation 5.1 For Fluids Of Small And Constant Compressibility
A simple linearization of eq. (5.1) can be obtained by deletion of some of the terms, dependent upon making various assumptions concerning the nature of fluid for which solutions are being sought. In this section the fluid considered will be a liquid which, in a practical sense, will apply to the flow of undersaturated oil. 
Expanding the left hand side of equ. (5.1), using the chain rule for differentiation gives
[image: ]
and differentiating equ. (5.4) with respect to r gives
[image: ]
which when substituted into equ. (5.16) changes the latter to
[image: ]


For liquid flow, the following assumptions are conventionally made
- the viscosity, µ is practically independent of pressure and may be regarded as a constant.
- the pressure gradient ∂p/∂r is small and therefore, terms of the order (∂p/∂r)2  can be neglected.
These two assumptions eliminate the first two terms in the left hand side of Eq. (5.18), 
[image: ]
reducing the latter to
[image: ]
Making one final assumption, that the compressibility is constant, means that the coefficient φµc/k is also constant and therefore, the basic equation has been effectively linearized.
This equation was solved for what is referred to as the constant terminal rate case. 
The constant terminal rate case requires a constant flow rate at the inner boundary, it was desirous to know the pressure behavior at various points in the reservoir.
In this lecture, the diffusivity equation is applied to the aquifer, where the inner boundary is defined as the interface between the reservoir and the aquifer. With the interface as the inner boundary, it would be more useful to require the pressure at the inner boundary to remain constant and observe the flow rate as it crosses the boundary or as it enters the reservoir from the aquifer.
With the dimensionless parameters, the diffusivity equation becomes:
[image: ]
Van Everdingen and Hurst (1949) proposed solutions to the dimensionless diffusivity equation for the following two reservoir-aquifer boundary conditions: 
• Constant terminal rate
• Constant terminal pressure.
For the constant-terminal-rate boundary condition, the rate of water influx is assumed constant for a given period; and the pressure drop at the reservoir aquifer boundary is calculated. 
For the constant-terminal-pressure boundary condition, a boundary pressure drop is assumed constant over some finite time period, and the water influx rate is determined. 
In the description of water influx from an aquifer into a reservoir, there is greater interest in calculating the influx rate rather than the pressure. This leads to the determination of the water influx as a function of a given pressure drop at the inner boundary of the reservoir-aquifer system. 
Van Everdingen and Hurst solved the diffusivity equation for the aquifer reservoir system by applying the Laplace transformation to the equation. The authors’ solution can be used to determine the water influx in the following systems: 
• Edge-water-drive system (radial system). 
• Bottom-water-drive system. 
• Linear-water-drive system.
 
4.4.1 Edge-Water Drive 
Figure 4.7 shows an idealized radial flow system that represents an Edge-water-drive reservoir. The inner boundary is defined as the interface between the reservoir and the aquifer. The flow across this inner boundary is considered horizontal and encroachment occurs across a cylindrical plane encircling the reservoir. With the interface as the inner boundary, it is possible to impose a constant terminal pressure at the inner boundary and determine the rate of water influx across the interface.
[image: ]
Figure (4.7) An idealized Edge-Water-drive model.
Van Everdingen and Hurst proposed a solution to the dimensionless diffusivity equation that utilizes the constant terminal pressure condition in addition to the following initial and outer boundary conditions:
The initial condition is
 p = pi for all values of r 
The outer boundary condition for an infinite aquifer is 
p = pi at r = ∞ 
The outer boundary condition for a finite aquifer is
 ∂p/∂r =0 at r=re 
Van Everdingen and Hurst assumed that the aquifer is characterized by: 
• Uniform thickness. 
• Constant permeability. 
• Uniform porosity. 
• Constant rock compressibility. 
• Constant water compressibility. 
The authors expressed their mathematical relationship for calculating the water influx in a form of a dimensionless parameter that is called dimensionless water influx WeD. They also expressed the dimensionless water influx as a function of the dimensionless time tD and dimensionless radius rD, thus they made the solution to the diffusivity equation generalized and applicable to any aquifer where the flow of water into the reservoir is essentially radial. 
The solutions were derived for cases of bounded aquifers and aquifers of infinite extent. The authors presented their solution in tabulated and graphical forms as reproduced here in Figures 4.8 through 4.11 and Tables 4.2 and 4.3. 
[image: ]
Figure (4.8) Dimensionless water influx WeD for several values of re/rR, Consider a circular reservoir of radius rR i.e. ra/re. (Van Everdingen and Hurst WeD. Permission to publish by the SPE).
[image: ]
Figure (4.9) Dimensionless water influx WeD for several values of re/rR, i.e. ra/re. (Van Everdingen and Hurst WeD. Permission to publish by the SPE).
[image: ]
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Figure (4.10) Dimensionless water influx WeD for infinite aquifer. (Van Everdingen and Hurst WeD. Permission to publish by the SPE).
[image: ]
Figure (4.11) Dimensionless water influx WeD for infinite aquifer. (Van Everdingen and Hurst WeD. Permission to publish by the SPE).
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The two dimensionless parameters tD and rD are given by:
[image: ]
Where: 
t = time, days 
k = permeability of the aquifer, md 
ϕ = porosity of the aquifer 
μw = viscosity of water in the aquifer, cp 
ra = radius of the aquifer, ft 
re = radius of the reservoir, ft 
Cw = compressibility of the water, psi-1 
Cf = compressibility of the aquifer formation, psi-1 
Ct = total compressibility coefficient, psi-1
The water influx is then given by:
     eq.(4.21)
h     eq.(4.22)
Where: 
We = cumulative water influx, bbl 
B = water influx constant, bbl/psi 
Δp = pressure drop at the boundary, psi 
WeD = dimensionless water influx

Equation 4.21 assumes that the water is encroaching in a radial form. Quite often, water does not encroach on all sides of the reservoir, or the reservoir is not circular in nature. In these cases, some modifications must be made in Equation 4.21 to properly describe the flow mechanism. One of the simplest modifications is to introduce the encroachment angle to the water influx constant B as:
[image: ]
 
h f     eq.(4.24)

θ is the angle subtended by the reservoir circumference, i.e., for semicircle reservoir against a fault θ = 180° and for quadrant circle reservoir against two faults θ = 90° as shown in figure below.
[image: ]





You must remember that
Havlena and Odeh methodology, which is depended on The van Everdingen and Hurst unsteady-state model in the MBE, it used to  determine the aquifer fitting parameters, as it was mentioned earlier in the second lecture, as following:

[image: ]

[image: ]
Figure above is shown, Havlena and Odeh straight-line plot (After: Havlena and Odeh, 1963) to find OOIP and reservoir properties, it was mentioned in before ( second lecture ).
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