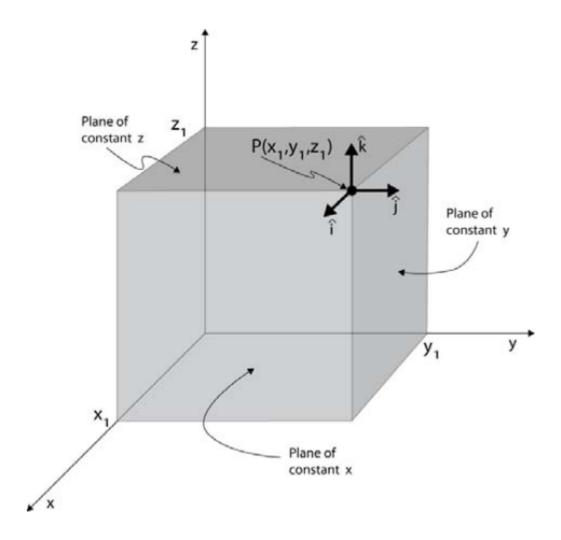
Introduction to Coordinate Systems

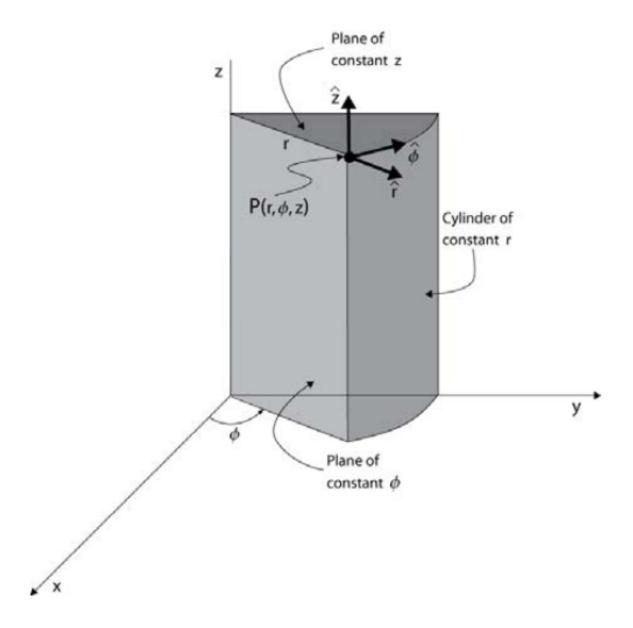
Rectangular, Cylindrical and Spherical Coordinate System.

Rectangular Coordinate System

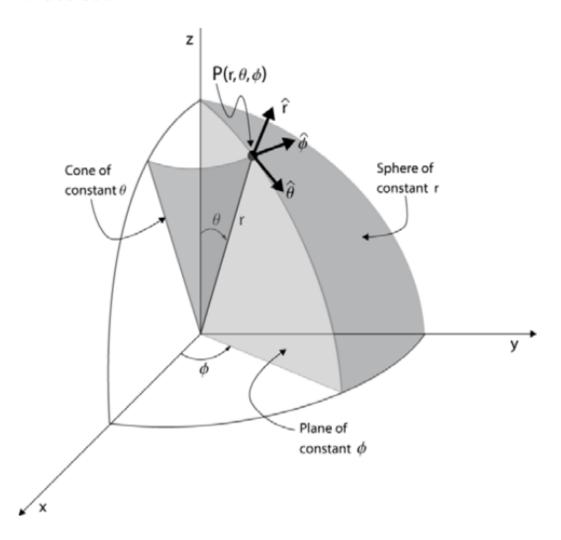
In rectangular coordinates a point P is specified by x, y, and z, where these values are all measured from the origin (see figure ______). A vector at the point P is specified in terms of three mutually perpendicular components with unit vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ (also called $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, and $\hat{\mathbf{z}}$). The unit vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ form a right-handed set; that is, if you push $\hat{\mathbf{i}}$ into $\hat{\mathbf{j}}$ with your right hand, your right thumb will point along $\hat{\mathbf{k}}$ direction.



Cylindrical Coordinate System



Spherical Coordinate System



Infinitesimal lengths and volumes

An infinitesimal length in the rectangular system is given by

$$d\mathbf{L} = \sqrt{dx^2 + dy^2 + dz^2} \tag{1}$$

and an infinitesimal volume by

$$dv = dx \, dy \, dz \tag{2}$$

In the cylindrical system the corresponding quantities are

$$d\mathbf{L} = \sqrt{dr^2 + r^2 d\phi^2 + dz^2} \tag{3}$$

and

$$dv = dr \, r \, d\phi \, dz \tag{4}$$

In the spherical system we have

$$d\mathbf{L} = \sqrt{dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta \ d\phi^2}$$
 (5)

and

$$dv = dr \, r \, d\theta \, r \sin\theta \, d\phi \tag{6}$$

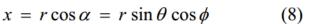
Direction cosines and coordinate-system transformation

As shown in the figure on the right, the projection x of the scalar distance r on the x axis is given by $r \cos \alpha$ where α is the angle between r and the x axis. The projection of r on the y axis is given by $r \cos \beta$, and the projection on the z axis by $r \cos \gamma$. Note that $\gamma = \theta$ so $\cos \gamma = \cos \theta$.

The quantities $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ are called the direction cosines. From the theorem of Pythagoras,

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \tag{7}$$

The scalar distance r of a spherical coordinate system transforms into rectangular coordinate distance



$$y = r \cos \beta = r \sin \theta \sin \phi \tag{9}$$

$$z = r\cos\gamma = r\cos\theta \tag{10}$$

from which

$$\cos \alpha = \sin \theta \cos \phi \, \gamma \tag{11}$$

$$\cos \alpha = \sin \theta \cos \varphi
\cos \beta = \sin \theta \sin \phi
\cos \gamma = \cos \theta$$
direction cosines (12)
(13)

$$\cos \gamma = \cos \theta \tag{13}$$

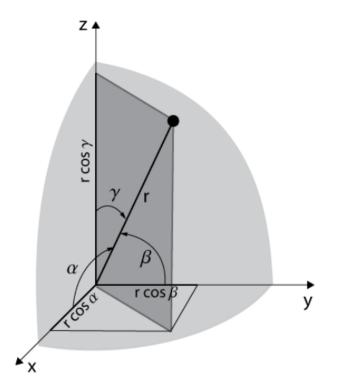
As the converse of (8), (9), and (10), the spherical coordinate values (r, θ, ϕ) may be expressed in terms of rectangular coordinate distances as follows:

$$r = \sqrt{x^2 + y^2 + z^2} \qquad r \ge 0 \tag{14}$$

$$\theta = \cos^{-1} \frac{z}{\sqrt{x^2 + y^2 + z^2}}$$
 $(0 \le \theta \le \pi)$ (15)

$$\phi = \tan^{-1} \frac{y}{x} \tag{16}$$

From these and similar coordinate transformations of spherical to rectangular and rectangular to spherical coordinates, we may express a vector A at some point P with $\[\]$ spherical components A_r , A_{θ} , A_{ϕ} as the rectangular components A_x , A_y , and A_z , where $\[\]$



$$A_x = A_r \sin \theta \cos \phi + A_\theta \cos \theta \cos \phi - A_\phi \sin \phi \tag{17}$$

$$A_{y} = A_{r} \sin \theta \sin \phi + A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \phi \qquad (18)$$

$$A_z = A_r \cos \theta - A_\theta \sin \theta \tag{19}$$

Note that the direction cosines are simply the dot products of the spherical unit vector $\hat{\mathbf{r}}$ with the rectangular unit vectors $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, and $\hat{\mathbf{z}}$:

$$\hat{\mathbf{r}} \cdot \hat{\mathbf{x}} = \sin \theta \cos \phi = \cos \alpha \tag{20}$$

$$\hat{\mathbf{r}} \cdot \hat{\mathbf{y}} = \sin \theta \sin \phi = \cos \beta \tag{21}$$

$$\hat{\mathbf{r}} \cdot \hat{\mathbf{z}} = \cos \theta = \cos \gamma \tag{22}$$

These and other dot product combinations are listed in the following table:

		Rectangular			Cylindrical			Spherical		
	Σ	â	ŷ	ĝ	ŕ	φ̂	ĝ	ŕ	$\hat{m{ heta}}$	φ̂
'ar	â	1	0	0	$\cos\phi$	$-\sin\phi$	0	$\sin\theta\cos\phi$	$\cos\theta\cos\phi$	$-\sin\phi$
Rectangular	ŷ	0	1	0	$\sin \phi$	$\cos\phi$	0	$\sin\theta\sin\phi$	$\cos\theta\sin\phi$	$\cos \phi$
Reci	â	0	0	1	0	0	1	$\cos \theta$	$-\sin\theta$	0
al	ŕ	$\cos \phi$	$\sin \phi$	0	1	0	0	$\sin \theta$	$\cos \theta$	0
Cylindrical	φ̂	$-\sin\phi$	$\cos\phi$	0	0	1	0	0	0	1
Ŝ	â	0	0	1	0	0	1	$\cos \theta$	$-\sin\theta$	0
lı	ŕ	$\sin\theta\cos\phi$	$\sin \theta \sin \phi$	$\cos \theta$	$\sin \theta$	0	$\cos \theta$	1	0	0
Spherical	ê	$\cos\theta\cos\phi$	$\cos\theta\sin\phi$	$-\sin\theta$	$\cos \theta$	0	$-\sin\theta$	0	1	0
Sp	φ̂	$-\sin\phi$	$\cos \phi$	0	0	1	0	0	0	1

Note that the unit vectors $\hat{\mathbf{r}}$ in the cylindrical and spherical systems are *not* the same. For example,

Spherical Cylindrical
$$\hat{\mathbf{r}} \cdot \hat{\mathbf{x}} = \sin \theta \cos \phi$$
 $\hat{\mathbf{r}} \cdot \hat{\mathbf{x}} = \cos \phi$ $\hat{\mathbf{r}} \cdot \hat{\mathbf{y}} = \sin \theta \sin \phi$ $\hat{\mathbf{r}} \cdot \hat{\mathbf{y}} = \sin \phi$ $\hat{\mathbf{r}} \cdot \hat{\mathbf{z}} = \cos \theta$ $\hat{\mathbf{r}} \cdot \hat{\mathbf{z}} = 0$

The fundamental parameters of the coordinate systems

Coordinate system	Coordinates	Range	Unit vectors	Length elements	Coordin surfaces	
D	X	$-\infty$ to $+\infty$	x̂ or î	dx	Plane	<i>x</i> =constant
Rectangular	y	$-\infty$ to $+\infty$	ŷ or ĵ	dy	Plane	y=constant
	Z	$-\infty$ to $+\infty$	ĝ or k	dz	Plane	z=constant
	r	0 to ∞	ŕ	dr	Cylinder	r <i>r</i> =constant
Cylindrical	$oldsymbol{\phi}$	0 to 2π	$\hat{oldsymbol{\phi}}$	$r d\phi$	Plane	ϕ =constant
	\boldsymbol{z}	$-\infty$ to $+\infty$	$\hat{\mathbf{z}}$	dz	Plane	z=constant
	r	0 to ∞	ŕ	dr	Sphere	<i>r</i> =constant
Spherical	heta	0 to π	$\hat{m{ heta}}$	$r d\theta$	Cone	θ =constant
	$oldsymbol{\phi}$	0 to 2π	$\hat{oldsymbol{\phi}}$	$r \sin \theta \ d\phi$	Plane	ϕ =constant

The following two tables give the unit vector dot products in rectangular coordinates for both rectangular-cylindrical and rectangular-spherical coordinates.

Σ	â	ŷ	ź
ŕ	$\frac{x}{\sqrt{x^2 + y^2}}$	$\frac{y}{\sqrt{x^2 + y^2}}$	0
φ̂	$\frac{-y}{\sqrt{x^2 + y^2}}$	$\frac{x}{\sqrt{x^2 + y^2}}$	0
ź	0	0	1

•	â	ŷ	ĝ
ŕ	$\frac{x}{\sqrt{x^2 + y^2 + z^2}}$	$\frac{y}{\sqrt{x^2 + y^2 + z^2}}$	$\frac{z}{\sqrt{x^2 + y^2 + z^2}}$
$\hat{m{ heta}}$	$\frac{xz}{\sqrt{x^2 + y^2}\sqrt{x^2 + y^2 + z^2}}$	$\frac{yz}{\sqrt{x^2 + y^2}\sqrt{x^2 + y^2 + z^2}}$	$-\frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2 + z^2}}$
φ	$-\frac{y}{\sqrt{x^2+y^2}}$	$\frac{x}{\sqrt{x^2 + y^2}}$	0

Example:
$$\hat{\mathbf{\phi}} \cdot \hat{\mathbf{y}} = \cos \phi = \frac{x}{\sqrt{x^2 + y^2}}$$

Example:
$$\hat{\mathbf{x}} \cdot \hat{\mathbf{r}} = \sin \theta \cos \phi = \frac{x}{\sqrt{x^2 + y^2 + z^2}}$$

Transformations of vector components between coordinate systems:

Rectangular to cylindrical

Cylindrical to rectangular

$$A_{r} = A_{x} \frac{x}{\sqrt{x^{2} + y^{2}}} + A_{y} \frac{x}{\sqrt{x^{2} + y^{2}}}$$

$$A_{x} = A_{r} \cos \phi - A_{\phi} \sin \phi$$

$$A_{\phi} = -A_{x} \frac{y}{\sqrt{x^{2} + y^{2}}} + A_{y} \frac{x}{\sqrt{x^{2} + y^{2}}}$$

$$A_{y} = A_{r} \sin \phi - A_{\phi} \cos \phi$$

$$A_{z} = A_{z}$$

$$A_{z} = A_{z}$$

Rectangular to spherical

$$\begin{split} A_r &= A_x \frac{x}{\sqrt{x^2 + y^2 + z^2}} + A_y \frac{y}{\sqrt{x^2 + y^2 + z^2}} + A_z \frac{z}{\sqrt{x^2 + y^2 + z^2}} \\ A_\theta &= A_x \frac{xz}{\sqrt{x^2 + y^2} \sqrt{x^2 + y^2 + z^2}} + A_y \frac{yz}{\sqrt{x^2 + y^2} \sqrt{x^2 + y^2 + z^2}} - A_z \frac{\sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2 + z^2}} \\ A_\phi &= -A_x \frac{y}{\sqrt{x^2 + y^2}} + A_y \frac{x}{\sqrt{x^2 + y^2}} \end{split}$$

Spherical to rectangular

$$A_{x} = A_{r} \sin \theta \cos \phi + A_{\theta} \cos \theta \cos \phi - A_{\phi} \sin \phi$$

$$A_{y} = A_{r} \sin \theta \sin \phi + A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \phi$$

$$A_{z} = A_{r} \cos \theta - A_{\theta} \sin \theta$$

Expressions for the gradient, divergence, and curl in all three coordinate systems:

Rectangular coordinates

$$\nabla f = \hat{\mathbf{x}} \frac{\partial f}{\partial x} + \hat{\mathbf{y}} \frac{\partial f}{\partial y} + \hat{\mathbf{z}} \frac{\partial f}{\partial z}$$
$$\nabla \bullet \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \mathbf{A} = \hat{\mathbf{x}} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{\mathbf{y}} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{\mathbf{z}} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right) = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$$

Cylindrical coordinates

$$\nabla f = \hat{\mathbf{r}} \frac{\partial f}{\partial r} + \hat{\mathbf{\phi}} \frac{1}{r} \frac{\partial f}{\partial \phi} + \hat{\mathbf{z}} \frac{\partial f}{\partial z}$$

$$\nabla \bullet \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} r A_r + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \mathbf{A} = \hat{\mathbf{r}} \left(\frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right) + \hat{\mathbf{\phi}} \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right) + \hat{\mathbf{z}} \frac{1}{r} \left(\frac{\partial}{\partial r} r A_{\phi} - \frac{\partial A_r}{\partial \phi} \right) = \begin{vmatrix} \hat{\mathbf{r}} \frac{1}{r} & \hat{\mathbf{\phi}} & \hat{\mathbf{z}} \frac{1}{r} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_r & r A_{\phi} & A_z \end{vmatrix}$$

Spherical coordinates

$$\nabla f = \hat{\mathbf{r}} \frac{\partial f}{\partial r} + \hat{\mathbf{\theta}} \frac{1}{r} \frac{\partial f}{\partial \theta} + \hat{\mathbf{\phi}} \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi}$$

$$\nabla \bullet \mathbf{A} = \frac{1}{r^2} \frac{\partial}{\partial r} r^2 A_r + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

$$\nabla \times \mathbf{A} = \hat{\mathbf{r}} \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} (A_\phi \sin \theta) - \frac{\partial A_\theta}{\partial \phi} \right) + \hat{\mathbf{\theta}} \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{\partial}{\partial r} r A_\phi \right) + \hat{\mathbf{\phi}} \frac{1}{r} \left(\frac{\partial}{\partial r} r A_\theta - \frac{\partial A_r}{\partial \theta} \right)$$