dc Analysis

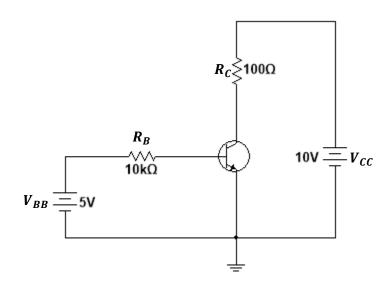
Consider $V_{BE}=0.7V$,

We can obtain transistor input characteristic as:

$$V_{BB} = I_B R_B + V_{BE}$$
 So,

$$I_B = rac{V_{BB} - V_{BE}}{R_B}$$
 IV Input Characteristic Curve Equation

As for the output characteristics,

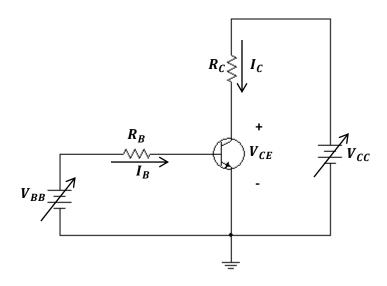

$$V_{CC} = I_C R_C + V_{CE}$$

$$I_C = \frac{V_{CC} - V_{CE}}{R_C}$$
 Output characteristic equation

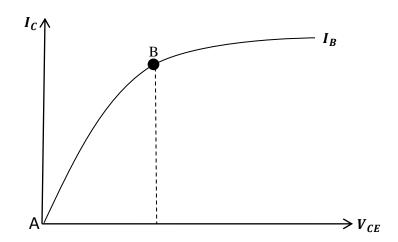
As for the voltage between base and collector:

$$V_{CB} = V_{CE} - V_{BE}$$

Example: Determine I_B , I_C , V_{CE} and V_{CB} in the circuit below. Transistor has $\beta_{dc}=150$.



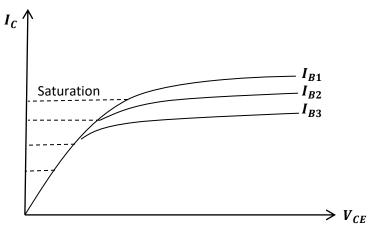
$$I_B = \frac{V_{BB} - V_{BE}}{R_B} = \frac{5 - 0.7V}{10k\Omega} = 430 \ \mu A$$


$$I_C = \beta_{dc}I_B = (150)(430 \,\mu A) = 64.5 \,mA$$

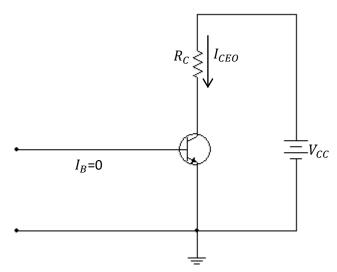
$$V_{CE} = V_{CC} - I_C R_C = 10V - (64.5mA)(100\Omega)$$

= $10V - 6.45V = 3.55V$
 $V_{CB} = V_{CE} - V_{BE} = 3.55V - 0.7V = 2.85V$

Collector Curves:



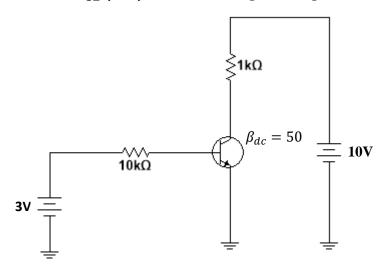
• Notice that both V_{BB} and V_{CC} are adjustable.


- If V_{BB} is set to produce a specific value of I_B and V_{CC} is zero, the $I_C=0$ and $V_{CE}=0$.
- As V_{CC} is gradually increased, V_{CE} will increase and so will I_C (from point A to point B).

- When V_{CE} reaches approximately 0.7V, the BC junction becomes reverse biased and I_C reaches its full value (almost constant) determined by the relationship $I_C = \beta_{dc} I_B$ as continues to increase.
- Actually I_C increases slightly as V_{CE} increases due to widening the BC depletion layer which results in fewer holes for recombination in the base region.

Cut off and Saturation

ullet When $I_B=0$, the transistor is cutoff. There is only very small amount of collector leakage current I_{CEO} , due mainly to thermally produced carriers.



- In cutoff, both BE and BC junctions are reverse-biased.
- As for saturation, when I_B is increased, I_C also increases, V_{CE} decreases (more voltage drop across R_C)

$$V_{CC} = I_C R_C + V_{CE}$$

When V_{CE} reaches a value called $V_{CE(sat)}$, BC becomes forward-biased and I_C can increase no further even with continued increase in I_B . At this point of saturation, $I_C = \beta_{dc} I_B$ is no longer valid.

Example: Determine whether or not the transistor in figure below is in saturation. Assume $V_{CE}(sat)$ is small enough to neglect.

$$I_{C(sat)} = \frac{V_{CC} - V_{CE(sat)}}{R_C} = \frac{10V}{1k\Omega} = 10mA$$

Now, let's see if I_B is large enough to produce $I_{C(sat)}$.

$$I_{B} = \frac{V_{BB} - 0.7V}{R_{B}} = \frac{3V - 0.7V}{10k\Omega} = \frac{2.3V}{10k\Omega}$$
$$= 0.23mA$$
$$I_{C} = \beta_{dC}I_{B} = (50)(0.23mA) = 11.5mA$$

This shows that with the specified β_{dc} , this base current is capable of producing an I_C greater than $I_{C(sat)}$, therefore the transistor is saturated, and the $I_C=11.5mA$ is never reached.