Output Impedance

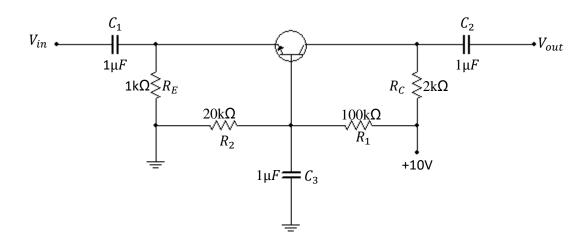
• Looking into the collector and base terminals, the ac collector resistance r_c' appears in parallel with R_C .

$$R_{out} \approx R_C$$

Current Gain

- The current gain is the output current I_c divided by the input current I_e .
- Since $I_c = I_e$

$$A_i \approx 1$$


Power gain

Since the current gain is approximately 1, power gain is approximately voltage gain .

$$A_p \approx A_v$$

Example: Find the input impedance, voltage gain, current gain, and power gain.

$$\beta_{dc}=200.$$

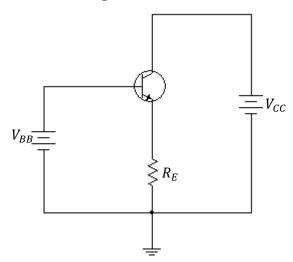
$$eta_{dc}R_E \gg R_2$$

$$V_B = \left(\frac{R_2}{R_1 + R_2}\right)V_{CC}$$

$$= \left(\frac{20k\Omega}{120k\Omega}\right)10V = 1.67V$$

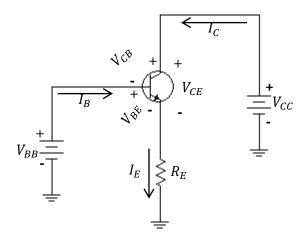
$$V_E = V_B - 0.7V = 1.67V - 0.7V = 0.97V$$

$$I_E = \frac{V_E}{R_E} = \frac{0.97V}{1k\Omega} = 0.97mA$$


Input impedance $R_{in} \approx r_e' = \frac{25mV}{0.97mA} = 25.77\Omega$

The ac voltage gain is:

$$A_v = \frac{R_C}{r_e'} = \frac{2k\Omega}{25.77\Omega} = 77.6$$


Also
$$A_i \approx 1$$

And $A_p = A_v = 77.6$

C: Common-Collector Configuration

- When a transistor is connected with the collector as the common (grounded) terminal, it is common collector connection (Emitter Follower).
- The collector is not at ac ground.
- Because V_{CC} has zero resistance (ideally) to an ac signal, therefore it is the ac ground.

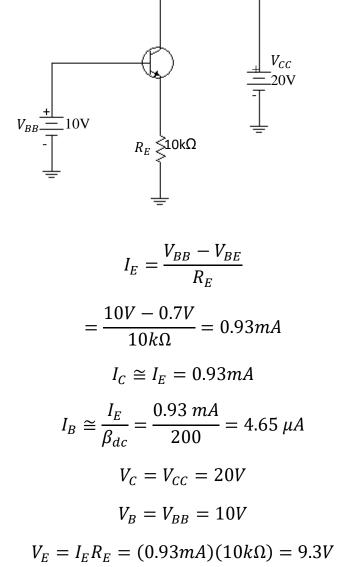
Current Gain

 I_E Is the output current , I_B is the input current , so $eta_{dc}=rac{I_E}{I_B}$ if , then $I_Cpprox I_E$ is current gain .

dc analysis

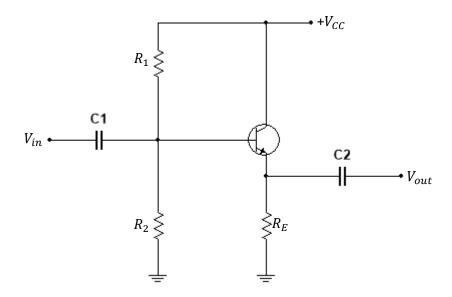
$$I_E = \frac{V_E}{R_E}$$

$$I_E = \frac{V_{BB} - V_{BE}}{R_E}$$

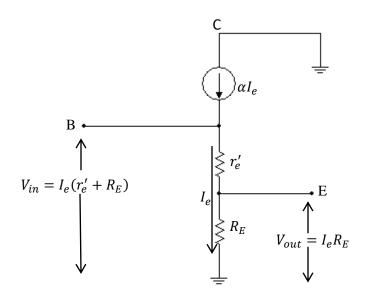

Assuming $I_C \cong I_E$, $I_B = \frac{I_E}{\beta_{dc}}$

$$V_{CE} = V_{CC} - V_E$$

$$V_{CE} = V_{CC} - I_E R_E$$


$$V_{CB} = V_{CC} - V_E - V_{BE}$$

Example: Determine I_B , I_C and I_E and the voltage at each transistor terminal with respect to ground (V_E , V_B and V_C). $\beta_{dc}=200$.



C1: Common-Collector Amplifier

• The common collector amplifier is usually referred to as an emitter follower.

Voltage Gain

$$V_{out} = I_e R_E$$

$$V_{in} = I_e (r'_e + R_E)$$

$$A_V = \frac{I_e R_E}{I_e (r'_e + R_E)}$$

$$A_V = \frac{R_E}{(r_e' + R_E)}$$

• Notice that the voltage gain is slightly less than 1, If $R_E\gg r_e'$, then $A_V\cong 1$

Input Impedance

The emitter-follower is characterized by high input impedance. This
what makes a very useful circuit. Because of the high input
impedance, it can be used as a buffer to minimize loading effects
when one circuit is driving another.

$$R_{in(base)} = \frac{V_b}{I_b} = \frac{I_e(r'_e + R_E)}{I_b}$$
$$= \frac{\beta I_b(r'_e + R_E)}{I_b}$$

$$=\beta(r_e'+R_E)$$
 If $R_E\gg r_e'$
$$R_{in(base)}=\beta R_E$$

$$R_{in} = R_1 \parallel R_2 \parallel R_{in(base)}$$