Chapter "4"

Alpha Decay

Until the discovery of spontaneous fission , α – **decay** was the only known type of radioactive disintegration , in which nuclei emits heavy charged particles $\binom{4}{2}He_2$) , i.e. α – **particle** is the **nucleus** of the Helium atom . Alpha particle is a very **stable** and tightly bound structure . Alpha emission is a coulomb repulsion effect , it becomes increasingly important for heavy nuclei because the disruptive coulomb force increases as (\mathbf{Z}^2) faster than the nuclear binding force (**which increases approximately as A**) . Most nuclei with $\mathbf{A} > \mathbf{190}$ and (many with $\mathbf{150} < \mathbf{A} < \mathbf{190}$) are energetically can decay by α – **emission** . In α - **decay** the nuclear reaction can be written in this form :

$$_{z}^{A}X_{N}$$
 $\xrightarrow{\alpha - decay}$ $_{z-2}^{A-4}Y_{N-2} + _{2}^{4}He_{2}$

All the α - ray emitted by heavy nuclei (A > 190) can be classified into one of the four independent decay chains with mass numbers 4n, 4n+1, 4n+2, where (n) is an integer. The decay process will tend to concentrate the nuclei in the longest – lived member of the chain.

1) The Thorium (4n) chain:

Every member of this chain has a mass number which is a multiple of four , i.e. $\underline{A=4n}$. The longest – lived member $^{232}_{90}Th$ has a half – life , $T_{1/2}=1.41\times 10^{10}~year=14.1\times 10^9~year$, which is about Three times the age of the earth $(T_{earth}=4.5\times 10^9~year)$.

(2) The Neptunium (4n + 1) chain:

In nature there is no A=4n+1 series , This is because its longest lived member $^{237}_{93}Np$ has a half – life of only 2.14×10^6 year . This series can be produced artificially .The (4n+1) series terminates at an stable $^{209}_{83}Bi$, this is the only series which do not terminate at an isotope of Pb.

3 The Uranium (4n + 2) chain:

This is the longest known series. In nature it begins with the heaviest naturally occurring nucleus $^{238}_{92}U$ $(T_{1/2}=4.47\times10^9~year)$, which is the age of the earth.

(4) The Actinium (4n + 3) chain:

This is the only naturally occurring nuclei which <u>undergoes fission</u> by <u>slow</u> neutrons . Actinium $^{227}_{89}Ac$ can be separated from **Uranium** minerals . The β -ray spectrum of actinium has a maximum energy of only 0.04 MeV . Actinium can be produced artificially in reactors by irradiator of $^{226}_{88}Ra$, the nuclear reaction is :

$$^{226}_{88}Ra + ^{1}_{0}n \longrightarrow ^{226}_{88}Ra^{*} \longrightarrow ^{227}_{89}Ac$$

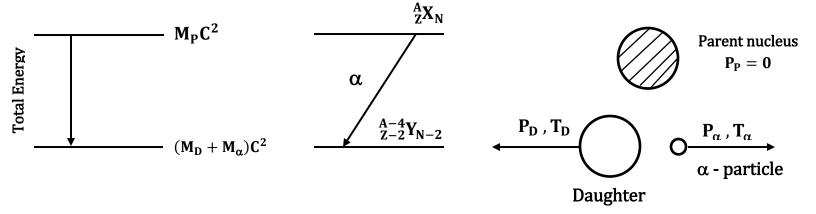

Fissionable materials ^{235}U and ^{239}Pu are belong to this series.

Table: Some characteristics of the Disintegration series of the Heavy Elements

Name of series	Туре	Final Nucleus (Stable)	Longest Lives Member	
			Nucleus	Half – life (years)
Thorium	4n	²⁰⁸ Pb	²³² Th	14.1×10^9
Neptunium	4n + 1	²⁰⁹ Bi	²³⁷ Np	2.14×10^{6}
Uranium	4n + 2	²⁰⁶ Pb	238 U	4.47×10^9
Actinium	4n + 3	²⁰⁷ Pb	235U	7.04×10^{8}

Energetics of α - decay:

The spontaneous emission of α - particle can be represented as follows :

Energy Diagram

Momentum Diagram

In α - decay we assume the initial decaying nucleus (parent nucleus) to be at rest $(T_P=0$, $P_P=0$), then the energy of the initial system is just the <u>rest</u> energy of the parent nucleus M_PC^2 . The final state (after decay) consist of daughter and α - particle, from the conservation of energy and momentum we have :

$$\begin{split} M_P C^2 &= M_D C^2 + T_D + M_\alpha C^2 + T_\alpha & ---- & \text{ } \\ 0 &= \vec{P}_D + \vec{P}_\alpha & ---- & \text{ } \\ \end{split}$$

Where $\ T_{\alpha}$ and $\ \overrightarrow{P}_{\alpha}$ are the kinetic energy and momentum of $\,\alpha$ - particle

 T_D and \overrightarrow{P}_D are the kinetic energy and momentum of daughter nucleus

$$\therefore M_{P}C^{2} = (M_{D} + M_{\alpha})C^{2} + (T_{D} + T_{\alpha}) \quad ---- \quad \boxed{3}$$

The decay energy is the net energy released in the decay called the $\bf Q$ – $\bf value$ is the $\bf sum$ of the resultant $\bf kinetic$ energies , i.e.

$$Q = T_D + T_\alpha \quad ---- \quad \boxed{4}$$

Therefore $M_PC^2 = (M_D + M_{\alpha})C^2 + Q$

$$\therefore \ Q = [M_P - (M_D + M_\alpha)]C^2 \quad ---- \quad \boxed{5}$$

$$Q_{\alpha} = (M_P - M_D + M_{\alpha})C^2 \quad \text{-----} \quad \mbox{(6)} \label{eq:Qalpha}$$

And the decay occurs spontaneously if Q>0, the Q-value can be calculated from atomic masses given in tables (in amu) then multiplying by 931.5 (1 amu = 931.5 MeV) to have the Q-value in MeV.

Since the Q – value is given by eq. 4, $Q=T_D+T_\alpha$ and since the kinetic energy $T\ll mc^2$, we can safely use nonrelativistic expressions to evaluate T_D and T_α . From eq. 2 we have $P_D=-P_\alpha$

$$T_{D} = \frac{P_{D}^{2}}{2M_{D}} = \frac{P_{\alpha}^{2}}{2M_{D}} = \frac{\mathcal{Z}M_{\alpha}T_{\alpha}}{\mathcal{Z}M_{D}} = \frac{M_{\alpha}}{M_{D}}T_{\alpha}$$

$$\therefore T_{D} = \frac{M_{\alpha}}{M_{D}}T_{\alpha} \qquad P_{D}, T_{D} \qquad P_{\alpha}, T_{\alpha} \rightarrow \alpha - \text{particle}$$

The recoil kinetic energy of daughter T_D is <u>not</u> negligible as it is in the case of γ – decay because α - particle is a large mass.

Daughter

Since
$$\mathbf{Q}_{lpha}=\mathbf{T}_{\mathrm{D}}+\mathbf{T}_{lpha}=rac{\mathsf{M}_{lpha}}{\mathsf{M}_{\mathrm{D}}}\;\mathbf{T}_{lpha}\;+\mathbf{T}_{lpha}=rac{\mathsf{M}_{\mathrm{D}}+\mathsf{M}_{lpha}}{\mathsf{M}_{\mathrm{D}}}\;\mathbf{T}_{lpha}$$
 طاقة حركية لألفا $\mathbf{Q}_{lpha}=rac{\mathsf{M}_{\mathrm{P}}}{\mathsf{M}_{\mathrm{D}}}\;\mathbf{T}_{lpha}=\left(rac{\mathsf{M}_{\mathrm{P}}}{\mathsf{M}_{\mathrm{P}}-4}
ight)\mathbf{T}_{lpha}$

and since $\,M_P \approx A\,$; (A is the mass number of parent nucleus)

$$\therefore \mathbf{Q}_{\alpha} \cong \left(\frac{\mathbf{A}}{\mathbf{A} - \mathbf{4}}\right) \mathbf{T}_{\alpha} \qquad \cdots \qquad \mathbf{8}$$
or
$$\mathbf{T}_{\alpha} = \mathbf{Q}_{\alpha} \left(\frac{\mathbf{A}}{\mathbf{A} - \mathbf{4}}\right) = \mathbf{Q}_{\alpha} \left(\mathbf{1} - \frac{\mathbf{4}}{\mathbf{A}}\right)$$

$$T_{\alpha} = Q_{\alpha} \left(1 - \frac{4}{A} \right)$$
 ---- 9

Alpha decay cannot take place unless $\,Q_{\alpha}>0$, i.e. is positive and the separation energy of α - particle $\,S_{\alpha}$ is equal to :

$$\mathbf{Q}_{\alpha} = -\mathbf{S}_{\alpha}$$

$$Q_{\alpha} = B_{tot.} \left(\begin{smallmatrix} A-4 \\ Z-2 \end{smallmatrix} X_{N-2} \right) + B_{tot.} (\alpha) - B_{tot.} \left(\begin{smallmatrix} A \\ Z \end{smallmatrix} X_{N} \right)$$