

Fig. A. Nuclear Levels

Alpha decay is the emission of α – particle from a virtual nuclear levels

$$^{A}_{Z}X_{N}$$
 $\xrightarrow{\alpha$ - emission $^{A-4}_{Z-2}Y_{N-2} + {}^{4}_{2}He_{2} + Q_{\alpha}$

This decay can be happened by \underline{most} nuclides with A > 190 and $(many\ with\ 150 < A < 190)$ are energetically can decay by α - emission.

In α - decay , several systematics trends are apparent :

(1) α – emission with large disintegration (decay) energy (Q_{α}) had short half – lives and conversely ,as in the α - decay of 232 Th (\sim 1. 4×10^{10} y , $Q_{\alpha} = 4.08$ MeV) and 218 Th (1. 0×10^{-7} sec , $Q_{\alpha} = 9.85$ MeV) , this means that a change by a factor 2 in energy (9.85/4.08) corresponds a factor of 10^{24} (10^{10} year/ 10^{-7} sec) in half – life , the theoretical explanation of this Geiger – Nuttall rule in 1928 was one of the first triumphs of quantum mechanics.

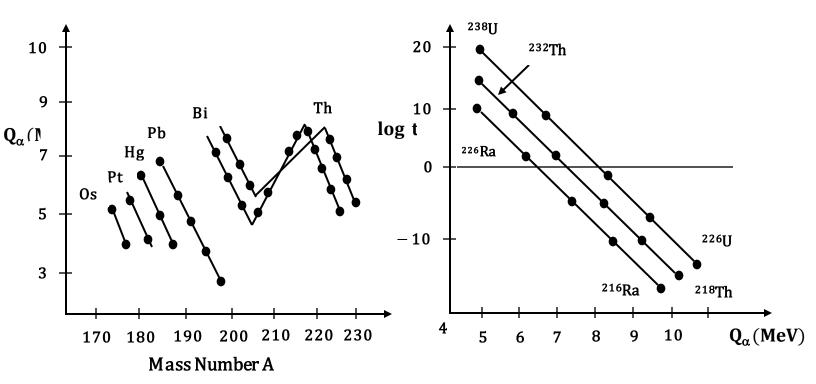


Fig (B). The effect of closed shells

at
$$A = 212$$
, $N = 126$

Fig (C). The inverse relationship between α - decay half - life and decay energy Q_{α} (Geiger - Nutall rule)

For ground state decay between **Even – Even** nuclides, the following **Geiger – Nutall rule** is valid:

$$log~t_{1/2} = a + \frac{b}{\sqrt{Q_{\alpha}}}$$

Which means that when the decay energy (Q_{α}) increases, the half – life decreases, i.e. the decay constant increases.

a and b are functions of Z and they are equal to:

$$a\approx -1.\,61\,Z_D^{2/3}-21.\,4$$

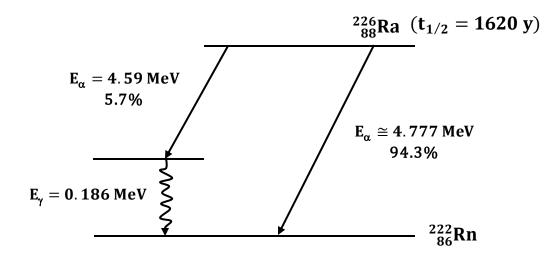
$$a \approx 1.61 Z_D$$

 $\boldsymbol{Z}_{\boldsymbol{D}}$ is the atomic number of daughter nucleus.

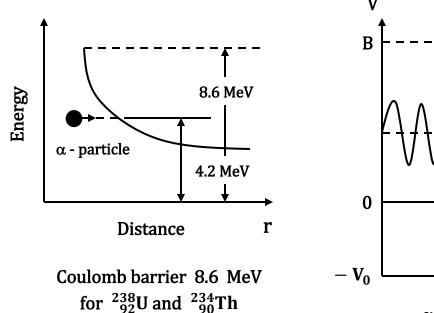
- ② The dependence of the decay energy (\mathbf{Q}_{α}) on \mathbf{A} or $(\mathbf{Z}$ or $\mathbf{N})$ is regular <u>except</u> near magic numbers (Fig. B).
- ③ For nuclides with a given $\underline{\mathbf{Z}}$, the half life is a smooth function of the decay energy (\mathbf{Q}_{α}) , especially for **even even** nuclei (**Fig. C**).

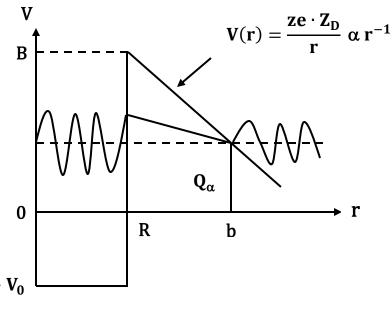
- 4 Adding neutrons to a nucleus, especially for A > 212, $\underbrace{reduces}$ the disintegration energy (Q_{α}) as shown in (Fig. B), which accordance to Geiger Nutall rule, $\underbrace{increases}$ the half life $(log \ t_{1/2})$ as shown in (Fig. C).
- (5) The decay constant <u>decreases</u> exponentially with Q_{α} and near A=150, the decay energy Q_{α} is practically zero.
- **6** The energy spectrum of α particles give information about the level scheme of the parent or daughter nuclei.

$$E_{\gamma} = 4.\,777 - 4.\,591 = 0.\,186 \; MeV$$



The Theory of α - decay:





 α - particle Decay Mechanism

As we know that nuclei consist of protons , neutrons and there is \underline{no} α - particles inside the nucleus. According to Gamow et. al. theory α - particles are preformed inside the parent nucleus just before α - decay . In this theory α - particles are assumed to move in spherical region determined by the daughter (Z_D) nucleus , which is known as one – body model . From the Fig. it is clear that there are three regions of interest.

- 1 The spherical region (r < R) inside the nucleus, where the potential well is of depth $(-V_0)$, V_0 is of positive value. classically α particles can move in this region with kinetic energy $Q + V_0$, but it cannot escape from it. Quantum mechanically, however, there is a chance of "Leakage" or "Tunneling" through such barrier.
- 2 The annular shell region (R < r < b) forms a potential barrier because here the potential energy is <u>more</u> than the total available energy Q. Classically α particle <u>cannot</u> enter this region from either direction.
- (3) The region (r > b) is classically <u>permitted</u> region outside the barrier.

From the <u>classical</u> point of view , an α - particle in the spherical potential well (r < R) would sharply reverse its motion every time it tries to pass beyond r = R From the <u>semi classical</u> point of view , the probability of decay per unit time (λ_{α}) is equal to the number of collisions per second which α - particle makes with the wall of the confining potential well multiplied by the probability of <u>penetration</u> the potential barrier.

$$\lambda_{\alpha} pprox \mathbf{fP} = \left(\frac{\upsilon_{in}}{2R}\right)\mathbf{P}$$
 ----- 1 $\longrightarrow \frac{\sqrt{2Q/m}}{2R}$

Where $\,\lambda_{\alpha}\,$ is the decay constant , $f=the\,frequency\,of\,collisions.$

 $\upsilon_{in} =$ the velocity of α - particle inside the nucleus.

P = probability of penetration.

 $(v_{in}/2R)$ = number of collisions /sec .

In ^{238}U , for example the leakage probability is so <u>small</u> that the α -particle, on the average must make $\sim 10^{38}$ tries before it escape ($\sim 10^{21}$ tires/sec for $\sim 10^9$ year). The quantum mechanical treatment gives about the same result for this problem . since $f=\left(\frac{\upsilon_{in}}{2R}\right)$ and the energy of α -particle emitted ranged from 4-5 MeV, then $f\approx 6\times 10^{21}$ tries/sec for $0\approx 5$ MeV.

The coulomb barrier in the Fig. has height B at r = R

Where
$$B = \frac{1}{4\pi \epsilon_0} \frac{ze \cdot \acute{Z}_D e}{R} = \left(\frac{e^2}{4\pi \epsilon_0}\right) \frac{2 \, \acute{Z}_D}{R} \quad ---- \quad \boxed{2}$$

 $\left(\frac{e^2}{4\pi\varepsilon_0}\right)=1.44~\text{MeV. fm. , ze}=2e~\text{is the charge of }\alpha\text{ - particle and }\acute{Z}_De~\text{is the charge}$ of daughter nucleus. The height of the barrier thus varies from (B-Q) to $\frac{1}{2}(B-Q)$ and R/b=Q/B .

For a typical heavy nucleus (Z=90, R=7.5 fm) the barrier height B is about 34 MeV. The radius b at which α - particle "leaves" the barrier is found from the equality of particle's energy and the potential energy.

$$\mathbf{b} = \frac{1}{4\pi \epsilon_0} \frac{z \, Z_D e^2}{Q} = \left(\frac{e^2}{4\pi \epsilon_0}\right) \frac{z \, Z_D}{Q} \quad ---- \quad 3$$

The penetration probability of the barrier is:

$$P = e^{-2G}$$
 ----- (4)

Where **G** is the **Gamow factor**

$$G = \sqrt{\frac{2m}{\hbar^2}} \int_{R}^{b} [V(r) - Q]^{1/2} dr$$
 ----- (5)

From equations (2) and (3):

- * λ_{α} decreases as z increases , i.e. the height of the barrier (the thickness z increases , eq. (3)).
- * λ_{α} increases as R increases , i.e. the barrier height $\,B\,$ and the thickness $b\,$ decreases.

From eq. (5)

$$G = \sqrt{\frac{2m}{\hbar^2 \; Q_\alpha}} \; \cdot \; \frac{2Z_d \; e^2}{4\pi \; \varepsilon_0} \; \cdot \; \left[\frac{\pi}{2} - 2\sqrt{\frac{Q}{m}} \; \right]$$

و بعدها نجد قيمة التردد (f)

(P) في معادلة (Φ) نجد احتمالية الاختراق (Φ) في معادلة (Φ) نجد احتمالية الاختراق

بعدما وجدنا فيه P, f

نطبق المعادلة (1) لنجد λ_{lpha} ليتسنى لنا معرفة العمر النصفى.

مثال محلول ص 170 - 171