2) If the temperature is constant at all altitudes: then the density is directly proportional with the pressure.

If (ρ_0) and (P_0) are values of density and pressure at sea level and (ρ) and (P) are values of density and pressure at any altitude (y) above sea level, then

Put (ρ) from eq. (2-14) in eq. (2-9) we will get

$$\frac{dP}{dy} = -\frac{\rho_o}{P_o}gP$$

Integrate from the pressure (P_0) at sea level (y=0) to the pressure (P) at (y)

$$\int_{P_o}^{P} \frac{dP}{P} = -g \frac{\rho_o}{P_o} \int_{0}^{y} dy$$

$$ln\frac{P}{P_o} = -\frac{g\rho_o}{P_o} y$$

$$\frac{P}{P_o} = e^{-\frac{g\rho_o}{P_o}y}$$

$$P = P_o e^{-\frac{g\rho_o}{P_o}y}$$

However, $g=9.8 \text{ m/sec}^2$, $\rho_0=1.2 \text{ kg/m}^3$, $P_0=1.013x10^5 \text{ n/m}^2$

Then,
$$\frac{g\rho_0}{P_0} = 1.16 \times 10^{-4} \ m^{-1} = 0.116 \ (km)^{-1} = a$$

Hence,

At
$$y = 0$$
, $P = P_o = 1$ atm

At
$$y = 20 \text{ km}$$
, $P = 0.1 \text{ atm}$

$$y = 40 \text{ km}, P = 0.01 \text{ atm}$$

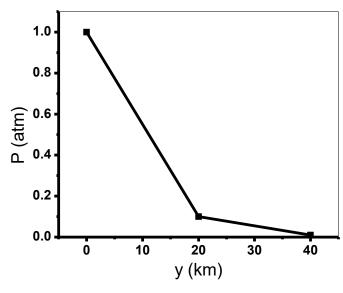


Figure 2-5 show the changes of pressure with altitude

Example 13: a) Find the total pressure in **lb/in²**, **500 ft** below the surface of the ocean. The relative density of seawater is **1.03**.

b) Find the pressure in the atmosphere 10 mile above sea level.

Example 14: Find the pressure in **torr** acts on a man at 20 m below the surface of the sea. The density of seawater is $1.03 \times 10^3 \text{ kg/m}^3$.