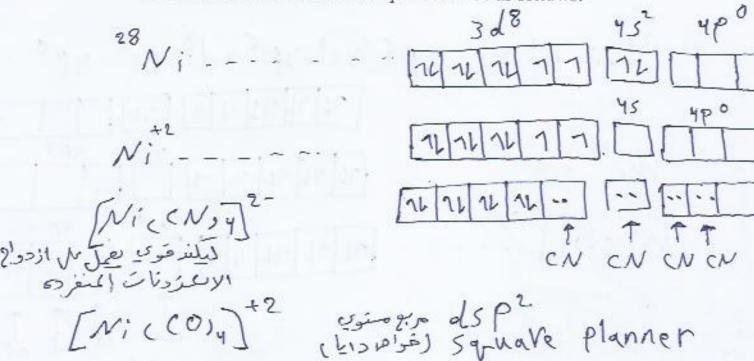

Example 2: The complex ion of the triiodo zinc (II) [ZnI₃] the electronic structure of the outer shell of zinc metal and the electronic structure of the complex shall be as follows:


- -The hybridization type sp² formation from orbital type s with two orbitals type p.
- -Trigonal planner complex ion shape.
- -The complex ion is a diamagnetic because of absence of a single electron in it.

Example 3: The complex ion of the nickel(II) tetrachloro [NiCl₄]²the electronic structure of the outer shell of nickel and the
electronic structure of the complex shall be as follows:

- -The hybridization type sp³ formation from orbital type s with three orbitals type p.
- -Tetrahedral complex ion shape.
- The complex ion is a paramagnetic because of presence pair electrons non paired.

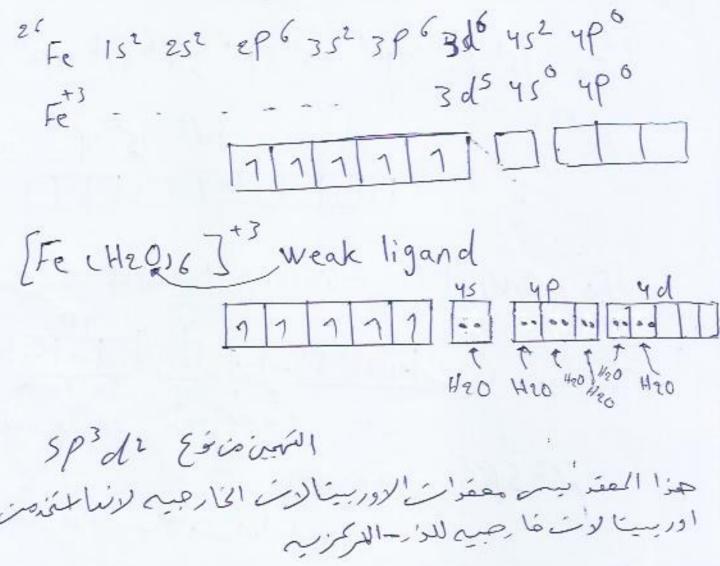
Example 4: The complex ion of the nickel(II) tetracyanid [NiCN₄]²the electronic structure of the outer shell of nickel and the
electronic structure of the complex shall be as follows:

- 8 electrons came from four ligands.
- -The hybridization type dsp² formation from orbital type d and one orbital from s with two orbitals type p.
- -Square planer complex ion shape.
- -The complex ion is a diamagnetic because of absence of a single electron in it.

هعقدات المنيكل اذا كانت دايا حفنا طبيه : حربع صبتوي رصقدات النيكل، بارا حقناطبيه = رباي السفوع

Note:

The single electrons of d remained as they were in the complex [NiCl₄]²⁻ while they became double in the complex [NiCN₄]²⁻ that is, the type of ligand has an important effect in this case where CN is a strong ligand because it makes single electrons In the complex that is formed paired. While the ion chlorine ligand is weak because it cannot make single electrons paired.


Weak ligands	Strong ligands
Iodide (I ⁻⁾	Cyanide (CN)
Bromide (Br)	Ammonia (NH ₃)
Chloride (Cl')	Nitrite (NO ₂ -)
Fluoride (F)	Carbonyl (CO)
Hydroxide (OH')	
Water (H ₂ O)	-

Example:

2 - The second case: The electronic structure in the complex:

The number of single electrons equals one and the hybridization of a type ${\rm dsp}^2$

Example: The complex ion of the iron (III) [Fe(H₂O)₆]³⁺ the electronic structure of the outer shell of iron and the electronic structure of the complex shall be as follows:

- 12 electrons came from six ligands.
- -The hybridization type sp³d² formation from orbital type s and three orbital from p with two orbitals type d .
- Octahedral complex ion shape.
- The complex ion is a paramagnetic because of presence pair electrons non paired.
- Weak ligand.

Example: The complex ion of the iron (III) [Fe(CN)₆]³ the electronic structure of the outer shell of iron and the electronic structure of the complex shall be as follows:

- 12 electrons came from six ligands.
- -The hybridization type d²sp³ formation from orbital type s and three orbital from p with two orbitals type d.
- Octahedral complex ion shape.
- The complex ion is a paramagnetic because of presence pair electrons non paired.
- Strong ligand.