HOMO-LUMO Theory

☐ Basic Concept:
In molecular chemistry, we study the electron configuration in molecules through molecular orbitals.
Each molecule has orbitals filled with electrons and orbitals that are empty.
The two most important of these are:
HOMO = Highest Occupied Molecular Orbital
☐ The highest orbital occupied by electrons.
LUMO = Lowest Unoccupied Molecular Orbital
$\hfill\Box$ The lowest orbital that is empty and has not yet been occupied by an electron.
□ Concept:
Electron transitions (light absorption, chemical reactions) often occur from the HOMO to the LUMO.
The difference between the energy of the HOMO and LUMO is called the energy gap.

Importance of the theory:

1. Chemical reactivity:

The smaller the HOMO–LUMO gap, the more easily the electron transfers, and the more reactive the molecule.

The larger the gap, the more stable and less reactive the molecule.

2. Photochemistry:

The absorption of light excites an electron from the HOMO to the LUMO.

For example, in dyes and semiconductors.

3. Electrical conductivity:

In conductive and semiconductor materials, the HOMO–LUMO gap determines their conductivity.

□ Simplified example:
In the ethylene molecule (C_2H_4) :
The HOMO is a π orbital (occupied).
The LUMO is a π^* orbital (antibonding, empty).
Any addition reaction (such as H_2 or Br_2) occurs through the overlap of the HOMO with the LUMO.
Ill explain it visually (imagine a simple energy diagram):
↑ High energy
LUMO (empty orbital)
Energy gap
HOMO (highest occupied orbital)
↓ Low energy
□ Process:
The electron is in the HOMO.
When light or energy is absorbed, it jumps to the LUMO.
The difference between the two energies $=$ the gap size.
□ Result:
If the gap is small \rightarrow the transition is easier \rightarrow the molecule is chemically active (e.g., colored dyes).
If the gap is large \rightarrow the transition is difficult \rightarrow the molecule is stable

Explaining the hydrogen molecule H₂ using the HOMO-LUMO concept:

(e.g., noble gases or saturated molecules).

1. Formation of the H₂ Molecule

Each hydrogen atom has one electron in its 1s orbital.

When two atoms come close together, the 1s + 1s orbitals fuse \rightarrow forming two molecular orbitals:

- 1. σ (bonding orbital) = bonding orbital (lowest energy) \rightarrow electrons are concentrated between the two nuclei.
- 2. σ (antibonding orbital)* = antibonding orbital (highest energy).

2. Filling Electrons

H₂ has two electrons.

These two electrons fill the σ (bonding) orbital.

The σ^* orbital remains empty.

3. HOMO-LUMO Relationship

HOMO (highest occupied orbital) = σ (bonding).

LUMO (lowest empty orbital) = σ^* (antibonding).

The gap between them is large \rightarrow therefore, the H₂ molecule is very stable.

Let's take a second example other than H₂ for comparison:

☐ Example: Oxygen molecule O₂

1. Electron configuration of single atoms (O):

Atomic number = 8

Distribution: 1s² 2s² 2p⁴

2. When forming an O_2 molecule:

The 2p orbitals of the two atoms combine → molecular orbitals are formed:

$$\sigma(2px)$$
, $\pi(2py)$, $\pi(2pz)$ (bonds)

 $\sigma^*(2px)$, $\pi^*(2py)$, $\pi^*(2pz)$ (antibonding)

3. Electron filling:

 O_2 has 16 electrons.

After filling the orbitals: Two single electrons remain in the π^* orbitals (antibonding).

4. HOMO-LUMO:

HOMO = occupied π^* (antibonding) orbital.

LUMO = empty π^* orbital.

5. Conclusion:

The presence of electrons in antibonding orbitals explains why oxygen is less stable than H₂.

More importantly, this explains its paramagnetic property (attracts magnets) because it has unpaired electrons.

\Box Comparison:

 H_2 : All electrons in bonding orbitals \rightarrow very stable.

 O_2 : Has electrons in antibonding orbitals \rightarrow less stable + paramagnetic.

We explain the nitrogen molecule N_2 using the same logic as molecular orbitals (MO) and HOMO–LUMO:

1. Electron configuration of a single atom (N)

Atomic number = 7

Configuration: 1s² 2s² 2p³

2. Formation of the N_2 molecule

When two nitrogen atoms combine \rightarrow we have 14 electrons. The orbitals combine to form: Bonding orbitals: $\sigma(1s)$, $\sigma(2s)$, $\pi(2px)$, $\pi(2py)$, $\sigma(2pz)$ Anti-bonding orbitals: $\sigma^*(1s)$, $\sigma^*(2s)$, $\pi^*(2px)$, $\pi^*(2py)$, $\sigma^*(2pz)$ 3. Filling the electrons We distribute 14 electrons: $\sigma(1s) \rightarrow 2$ electrons $\sigma^*(1s) \rightarrow 2$ electrons $\sigma(2s) \rightarrow 2$ electrons $\sigma^*(2s) \rightarrow 2$ electrons $\pi(2px), \pi(2py) \rightarrow 4$ electrons $\sigma(2pz) \rightarrow 2$ electrons ☐ Result: All electrons are filled in bonding orbitals, and no electrons are in anti-bonding (2p*) orbitals. 4. HOMO – LUMO HOMO (Highest Occupied Orbital) = $\sigma(2pz)$ LUMO (Lowest Empty Orbital) = π *(2px) or π *(2py) 5. Stability The bond in N_2 is very strong because: There are no electrons in antibonding orbitals. Bond order = (10 bonding electrons – 4 antibonding) \div 2 = 3 (triple bond). \square This explains why N_2 is a very inert molecule (difficult to react; it requires high energy to break, for example, in the Haber process to produce ammonia). ☐ Quick comparison:

 $H_2 \rightarrow \text{Simple bond } (\sigma), \text{ large gap } \rightarrow \text{Stable}.$

 $N_2 \rightarrow \text{Very strong triple bond} \rightarrow \text{Inert.}$

 $O_2 \rightarrow$ Has electrons in antibonding orbitals \rightarrow Less stable + paramagnetic.

This is a comparison table between H_2 , N_2 , and O_2 in terms of molecular orbitals, HOMO–LUMO, and bond order:

Molecule Number of electrons HOMO (highest occupied orbital) LUMO (lowest empty orbital) Bond order Stability/Properties

 H_2 2 $\sigma(1s)$ $\sigma^*(1s)$ 1 (single bond) Very stable, large energy gap

 N_2 14 $\sigma(2pz)$ $\pi^*(2px, 2py)$ 3 (triple bond) Very stable and inert, very strong bond

 O_2 16 $\pi^*(2px, 2py)$ (partially occupied) $\pi^*(2px, 2py)$ (partially empty) 2 (double bond) Less stable than N_2 , paramagnetic (attracts magnets)

☐ Summary:

H₂: Very simple, strong, and stable single bond.

 N_2 : Strongest triple bond between atoms \rightarrow Inert and difficult to react.

 O_2 : Double bond + lone electrons in anti-orbitals \rightarrow More reactive + paramagnetic.

We explain the concept of the HOMO-LUMO gap and its relationship to color:

1. The principle of light absorption

The molecule absorbs a photon (light) \rightarrow bounces an electron from the HOMO \rightarrow LUMO.

The amount of energy required = the energy gap (ΔE).

Relationship:

 $\Delta E = h \cdot \cot v = \operatorname{frac} \{hc\} \{\lambda\}$

2. If the gap is large, it requires high energy (ultraviolet radiation).

The molecule absorbs in the UV (invisible).

Result: The substance is transparent or colorless to the eye (such as H_2 or N_2).

3. If the gap is small, it requires less energy (visible light 400–700 nm).

The molecule absorbs a specific color from the visible spectrum.

What we see is the complementary color of the absorbed color.

For example:

If the molecule absorbs green light, it appears red.

If it absorbs blue, it appears orange/yellow.

4. Examples from Daily Life

O₂: Medium bandgap, absorbs little in a specific area, but is nearly transparent.

Organic pigments (such as β -carotene in carrots): Small bandgap \rightarrow absorbs blue/green \rightarrow appears orange.

Transition metals (such as Cu^{2+} or Fe^{3+} ions): Small d-d or HOMO-LUMO transitions \rightarrow give distinct colors (blue, green, etc.).