Examples Models

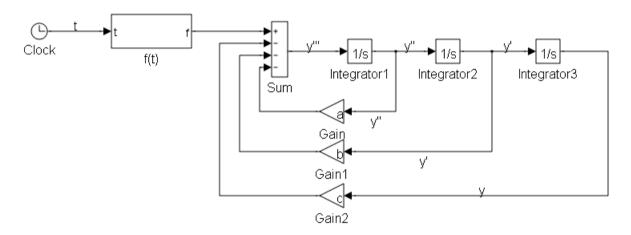
The following examples will hopefully give ideas for the best way to lay out models. While there is no right or wrong way, always prioritise readability.

Time External Force Newtons 2nd Law Force In1 Force Acceleration ÷ position Divide Integrator Integrator1 velocity Mass Force Equations Velocity Position

Example 1: Dynamic Systems

The above shows the general approach to modelling dynamic systems. You calculate the force, use Newton's 2nd law to calculate the acceleration, integrate to get the velocity and then integrate again to obtain the position.

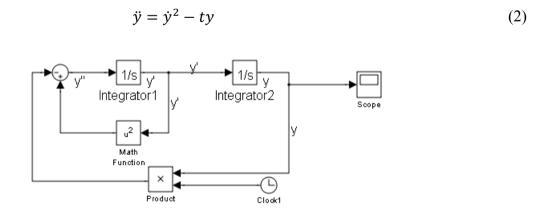
The above model is a general guide, it can get a bit more complicated. For example, the mass is required to calculate gravitational forces. It is also possible that the mass will be a function. For example, a rocket losses most of its mass as the fuel is burnt off.


Example 2: Ordinary Differential Equations (ODE)

The general rule for solving differential equations is to write the equation in terms of the highest differential. For example, consider the general second order equation below.

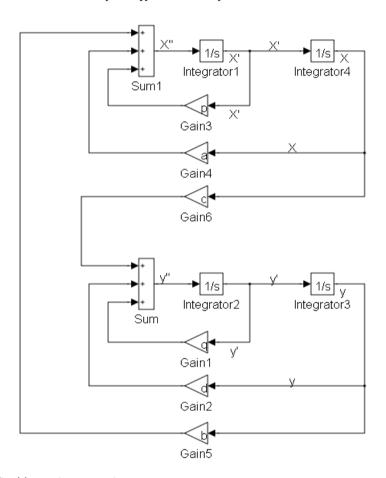
$$\ddot{y} + a\ddot{y} + b\dot{y} + cy = f(t)$$

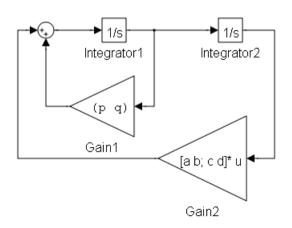
$$\ddot{y} = f(t) - a\ddot{y} - b\dot{y} - cy$$
(1)


You then use integrators to obtain lower terms:

The right hand side of the equations is formed by feeding back these terms to form the expression required.

Notice that the model contains no differentiators, even though we are modelling a differential equation. Models with differentiators tend to produce a lot of noise, so are avoided if possible.


The next example is not linear or time invariant:


Example 3: Simultaneous Ordinary Differential Equations

Of course Simulink is not limited to equations in one variable. Consider the simultaneous equation below:

$$\ddot{x} = p\dot{x} + ax + by
\ddot{y} = q\dot{y} + cx + dy$$
(3)

This can be simplified by using matrices:

Example 4: Linear Systems

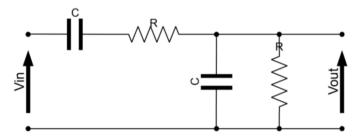
Many systems can be modelled by linear, time invariant (LTI) differential equations, such as equation 5 below.

$$a_3\ddot{y} + a_2\ddot{y} + a_1\dot{y} + a_0y = b_2\ddot{x} + b_1\dot{x} + b_0x \tag{5}$$

where y is the output and x the input.

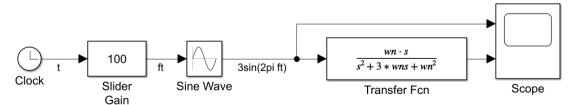
LTI systems can be represented by a transfer function:

$$H(s) = \frac{Y(s)}{X(s)} = \frac{b_2 s^2 + b_1 s + b_0}{a_3 s^3 + a_2 s^2 + a_1 s + a_0}$$


$$H(j\omega) = \frac{b_2(j\omega)^2 + j\omega b_1 + b_0}{a_3(j\omega)^3 + a_2(j\omega)^2 + j\omega a_1 + a_0}$$

It is the convention in MATLAB to represent polynomial expressions with row vectors of the coefficients. So the numerator of the above transfer function is represented by $[b_2 \ b_1 \ b_0]$ and the denominator by $[a_3 \ a_2 \ a_1 \ a_0]$. Entering these two vectors to the appropriate block parameters of a transfer function block will produce the following block:

$$\sqrt{\frac{b2.s^2 + b1.s + b0}{a3.s^3 + a2.s^2 + a1.s + a0}}$$


Transfer Fcn

LTI transfer functions are used extensively in electronics to represent idealized electronic circuits. Take for example this circuit and its transfer function representation below:

$$H(s) = \frac{Vout(s)}{Vin(s)} = \frac{s\omega_n}{s^2 + 3s\omega_n + \omega_n^2}$$
 (6)

The following model can be used to observe the behaviour in Simulink:

In the Transfer Function block parameters values are set with wn being a predefined variable in the MATLAB workspace: numerator = $[wn \ 0]$ and denominator = $[1 \ 3*wn \ wn^2]$

Poles and Zeros

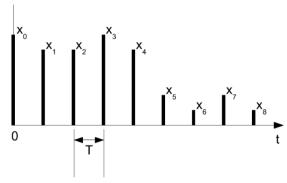
An alternative way of representing a transfer functions is to use the pole-zero description. If you solve the numerator polynomial you get the zeros. So called because the transfer function is zero at that value. If you solve the denominator polynomial, you get the poles. They are called poles because if you plot the absolute value of a transfer function, it looks a bit like a tent, with the poles being the location of the tent poles.

The transfer function from the circuit example can then be represented in its pole zero form:

$$H(s) = K \frac{(s - z_1)(s - z_2)}{(s - p_1)(s - p_2)(s - p_3)}$$
(7)

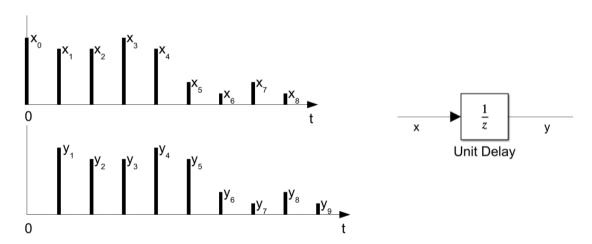
Where p_i is a pole and z_i is a zero and K is a constant.

You can model the transfer function in this form using a zero-pole block:


To configure this block you provide a vector for the numerator and the denominator. In this case the numerator is $[z1\ z2]$ and the denominator is $[p1\ p2\ p3]$ and the gain is K.

Useful MATLAB functions:

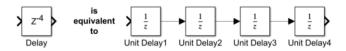
- The MATLAB function **roots** will solve a polynomial, given the coefficients of the polynomial. The function **poly** does the opposite. Given the roots of a polynomial, it will return the coefficients of the polynomial.
- The Signal Processing toolbox provides a number of functions to provide the coefficients required to implement various filters. See help for butter, cheby1, cheby2 and besself.
- The function **freqs** (**B**, **A**) will plot the frequency response of a system, where **B** is a vector of the numerator coefficients and **A** is a vector of the denominator coefficients.


Example 5: Modelling Discrete Systems

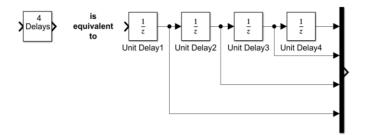
A discrete signal has values only at discrete points in time. A sampled signal is always discrete. The sample period, T, is the time between two successive samples and sample frequency, f_s , is 1/T.

You will need to set the Sample Time in Block Parameters for many of the blocks in the discrete library. Most blocks use '-1' which is simply the inherited value from the model. Unfortunately, inherited sample time does not work for discrete models. If you find that you model is sampling at one second, regardless of the solver settings, then check the sample time of your blocks.

The fundamental component of a discrete system is a Unit delay. This delays the signal by one time period. In general, $y_n = x_{n-1}$, as seen in the example below.



The Z transform replaces each delay by one sample with a multiplication by z^{-1} :


$$Y(z) = z^{-1}X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{z}$$

There are other blocks in the discrete library that contain combinations of unit delays.

You can also use the Tapped Delay block:

Discrete Transfer Functions

Continuous systems are described by differential equations, discrete systems are described by recurrence equation. Equation 8 below is a typical recurrence equation:

$$a_0 y_n + a_1 y_{n-1} + a_2 y_{n-2} + a_3 y_{n-3} = b_0 x_n + b_1 x_{n-1} + b_2 x_{n-2}$$
 (8)

where x is the input and y the output. Each unit delay is replace by z^{-1} in the Z transform.

$$(a_0 + a_1 z^{-1} + a_2 z^{-2} + a_3 z^{-3}) Y(z) = (b_0 + b_1 z^{-1} + b_2 z^{-2}) X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{a_0 + a_1 z^{-1} + a_2 z^{-2} + a_3 z^{-3}}$$
(9)

which is the transfer function of a digital filter and is **defined in terms of z**⁻¹. This can be represented in a Simulink model by the **discrete filter block**.

This block was produced by setting:

numerator = [b0 b1 b2] and denominator = [a0 a1 a2 a3]

in the block parameters.

Do not forget to set the sample time too.

An alternative form is to write the **transfer function in terms of z**. If we multiply top and bottom of equation 9 by z^3 we get equation (10). You can represent this with the Transfer Function block or if you have the poles and zeros, the Zero-Pole block.

$$\begin{bmatrix}
\frac{b0.z^3 + b1.z^2 + b2.z}{a0.z^3 + a1.z^2 + a2.z + a3}
\end{bmatrix}$$
Discrete
Transfer Fcn

$$\begin{bmatrix}
\frac{4(z-z1)(z-z2)}{(z-p1)(z-p2)(z-p3)}
\end{bmatrix}$$

$$H(z) = \frac{b_0z^3 + b_1z^2 + b_2z}{a_0z^3 + a_1z^2 + a_2z^1 + a_3}$$
(10)

Finite Impulse Response (FIR) digital filters do not have any poles. The recurrence equation:

$$y_n = b_0 x_n + b_1 x_{n-1} + b_2 x_{n-2} \tag{11}$$

gives the following Z transform and can be represented by the block especially for FIR filters:

$$Y(z) = (b_o + b_1 z^{-1} + b_2 z^{-2})X(z)$$

$$H(z) = \frac{Y(z)}{X(z)} = b_o + b_1 z^{-1} + b_2 z^{-2}$$
Discrete FIR Filter (12)

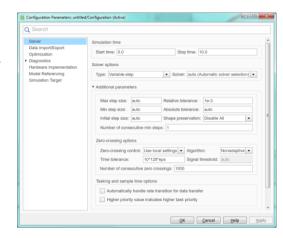
Simulink Shortcuts

This section contains the short cut keys that can be used to build and edit your model. For more details select from the model menu bar Help ► Keyboard Shortcuts

OBJECT SELECTION SHORTCUTS			
Select an object	Click		
Select more objects	Shift+click		
Select all objects	Ctrl+A		
Copy object	Drag with right mouse button		
	Ctrl+drag		
Delete selected object	Delete or Backspace		
Cut	Ctrl+X		
Paste	Ctrl+V		
Undo	Ctrl+Z		
Redo	Ctrl+Y		

BLOCK SHORTCUTS			
Search for blocks	Click and type		
Add text to model	Double click and type		
Move block	Drag <i>or</i> Arrow keys		
Resize block	Drag handles in corners		
Resize block, keeping same ratio of width and height	Shift + drag handle		
Resize block from the center	Ctrl + drag handle		
Rotate block counterclockwise	Ctrl + Shift + R		
Flip block	Ctrl+I		
Rotate block clockwise	Ctrl+R		
Rotate block counterclockwise	Ctrl+Shift+R		
Connect blocks	Drag from port to port		
	Select first block, Ctrl +click second block		
Draw branch line	Ctrl+drag line		
	Right-mouse button+drag		
Create subsystem from selected blocks	Ctrl+G		
Open selected subsystem	Enter or Double click		
Go to parent of selected subsystem	Esc		

SIMULATION SHORTCUTS			
Open Configuration Parameters dialog box	Ctrl+E		
Update diagram	Ctrl+D		
Start simulation	Ctrl+T		
Stop simulation	Ctrl+Shift+T		
Build model (for code generation)	Ctrl+B		


SIGNALS SHORTCUTS			
Name a signal line	Double-click signal and type name		
Delete signal label and name	Delete characters in label or delete name in Signal		
	Properties dialog box.		
Delete signal label only	Right-click label and select Delete Label .		
Open signal label text box for edit	Double-click signal line		
	Click label		
Move signal label	Drag label to a new location on same signal line		
Copy signal label	Ctrl+drag signal label		
Change the label font	Select the signal line (not the label) and		
	use Diagram > Format > Font Style		

ZOOMING SHORTCUTS		
Zoom in	Ctrl + +	
Zoom out	Ctrl + -	
Zoom to normal (100%)	Ctrl + 0 or Alt + 1	
Zoom with mouse	Ctrl + scroll wheel	
Zoom in on object	Drag the Zoom button from the palette to the object	
Fit diagram to screen	Spacebar	
Scroll view	Arrow keys or Shift + arrow for larger pans	
Scroll with mouse	Spacebar + drag Hold the scroll wheel down and drag the mouse	

The Solver: Zero-Crossing Options

A variable-step solver dynamically adjusts the time step size, causing it to increase when a variable is changing slowly and to decrease when the variable changes rapidly. This behaviour causes the solver to take many small steps in near a discontinuity because the variable is rapidly changing in this region. This improves accuracy but can lead to excessive simulation times.

Simulink uses a technique known as zero-crossing detection to accurately locate a discontinuity without resorting to tiny time steps. Usually this technique improves simulation run time, but it can cause some

simulations to halt before the intended completion time. Understanding how Simulink's zero-crossing detection algorithms, adaptive and non-adaptive, work is beyond the scope of the course.

The table below should help you overcome some errors associated with zero-crossing, particularly a halting model. Implementing most of the changes, involves using the

Model Configuration Parameters dialog (MCP) box, accessed via the Cog symbol.

Possible Change	How to make this change	Rationale for making this change	
Increase the number	Increase the Number of consecutive	This may give your model enough time to	
of allowed zero	zero crossings on the Solver pane in the	resolve the zero crossing.	
crossings	MCP box.		
Disable zero-crossing	First, clear the Enable zero-crossing Locally disabling zero-crossing detection		
detection for a specific	detection check box on the block's	prevents a specific block from stopping the	
block	parameter dialog box.	simulation because of excessive consecutive	
	Then, select Use local settings from	zero crossings. All other blocks continue to	
	the Zero-crossing control pull down on	benefit from the increased accuracy that	
	the Solver pane of the MCP box.	zero-crossing detection provides.	
Disable zero-crossing	Select Disable all from the Zero-crossing	This prevents zero crossings from being	
detection for the	control pull down on the Solver pane of	detected anywhere in your model.	
entire model	the MCP box.		
Reduce the maximum	Enter a value for the Max step	This can insure the solver takes steps small	
step size	size option on the Solver pane of the	enough to resolve the zero crossing.	
	MCP box.	However, reducing the step size can increase	
		simulation time, and is seldom necessary	
		when using the Adaptive algorithm.	
Use	Select Adaptive from the Algorithm pull	This algorithm dynamically adjusts the zero-	
the Adaptive Algorithm	down on the Solver pane in the MCP	crossing threshold, which improves accuracy	
	box.	and reduces the number of consecutive zero	
		crossings detected. You can now specify Time	
		tolerance and Signal threshold.	
Relax the Signal	Select Adaptive from the Algorithm pull	The solver requires less time to precisely	
threshold	down and increase the value of	locate the zero crossing. This can reduce	
	the Signal threshold option on	simulation time and eliminate an excessive	
	the Solver pane in the MCP box.	number of consecutive zero-crossing errors.	
		However, relaxing the Signal threshold may	
		reduce accuracy.	

Simulink Online Documentation

The full Simulink documentation is available from the help menu. You can obtain this from the MATLAB help, or you can go directly to the Simulink help. From the model menu bar select

Help ► Simulink ► Simulink Help

Block Documentation

The easiest way of obtaining the documentation for a particular block is to hit the help button in the block parameters. An alternative is to select the block and then select

Help ► Simulink ► Blocks & Blocksets Reference

from the model menu bar. If no block is selected when you do this, then you will be given a list of all the blocks. You can then select the documentation you want from this list. At the top of the list, on the right hand side you can choose to display by Category or in Alphabetic order.

In the Help Menu you will also find links to Web Resources

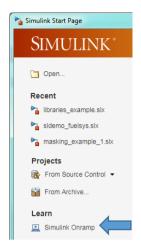
Help ► Web Resources

Particularly useful MATLAB Central which is the hub for the online MATLAB and Simulink community. Here you will find "MATLAB Answers" where people ask for support on MATLAB & Simulink. Once you become confident with MATLAB and Simulink you may wish to explore the File Exchange, where people upload custom files.

Further Examples

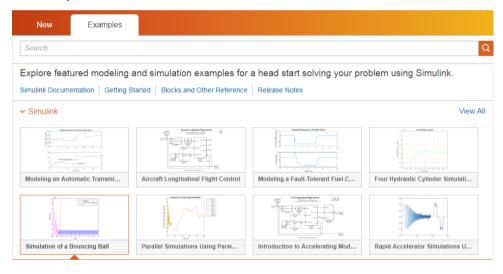
Simulink Onramp

In MATLAB 2018b, you can complete the Simulink Onramp course created by MathWorks. It is around 3 hours of good quality content designed to introduce you to Simulink. It will give you more practice at a similar level to the exercises in this course.


You can access this by installing MATLAB 2018b (see instructions on final pages of notes) and then downloading a toolbox available at

bit.ly/SimulinkOnRamp

OR


https://uk.mathworks.com/matlabcentral/fileexchange/69056-simulink-onramp

Once installed, restart MATLAB, launch Simulink and click the link under Learn

Explore Simulink Examples

Use the Examples Tab to explore different Simulink models (File > New > Model...)

There is even a bouncing ball example so you can see a different approach to one you might have taken in the final exercise.

Experiment with Simulink Dashboard Blocks

Open the Fuel System Demo with the command:

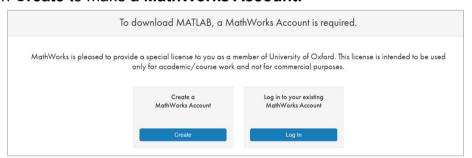
open system([matlabroot '\toolbox\simulink\simdemos\automotive\fuelsys\sldemo fuelsys'])

Read through the documentation, so that you understand how the model works: https://uk.mathworks.com/help/simulink/ug/tune-and-visualize-your-model-with-dashboard-blocks.html

Explore the blocks by double clicking them to get a better understanding of how they work. Follow the instructions in the section **Tune Parameters During Simulation** to try editting the model.

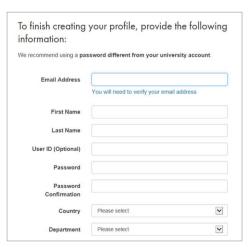
Oxford University MATLAB Installation

1. VISIT UNIQUE WEB ADDRESS


To install MATLAB onto your computer, go to the web page http://bit.ly/OxUniMatlab OR https://www.mathworks.com/login/identity/university?entityId=https://registry.shibboleth.ox.ac.uk/idp

Use your University of Oxford, single sign-on username and password.

2. CREATE UNIVERSITY LINKED MATHWORKS ACCOUNT


Then click on Create to make a MathWorks Account:

To register to use MATLAB, you need an Oxford University e-mail address such as firstname.lastname@eng.ox.ac.uk.

Fill in the rest of the form. The system will send you an e-mail, with a link you must click to verify.

You can access your e-mail at https://outlook.office.com/owa/

Now you can access many resources: e.g. MATLAB Online, Mobile or Academy.

You can also download and install MATLAB for your personal computer.

See the next page for details.

3. DOWNLOAD CHOOSEN MATLAB VERSION

After verification you will be taken directly to the MATLAB download page. (Also accessible by "My Account" and the Download Icon: •)

Choose the most recent release (mac users see the table for guidance).

4. SELECT THE CORRECT INSTALLATION METHOD AND LICENSE

When you run the installer, you will be asked to select an **Installation Method**. Select **Log in** with a MathWorks Account.

Later, you will be asked enter an **e-mail address** and **password**.

Use the **e-mail address** and **password** that you for your MathWorks account

When asked to Select a license, choose the license with the Individual Label.

Toolboxes: When asked to select the products, there are over 80 toolboxes available to install. If you are using a standard broadband network connection at home, it will take many hours to download all the toolboxes. To save time, select just MATLAB and the toolboxes you need. We suggest MATLAB, Symbolic Math Toolbox and Simulink. You can run the installer again later to add additional toolboxes.

Which MATLAB version for mac?

Use the table on the right to choose the correct MATLAB release for your operating system.

To find which version of OSX you are using. On the Mac, Click on the apple in the far top left.

Select About this MAC

If you have any problems or queries, have a look at the MATLAB FAQ page: http://users.ox.ac.uk/~engs1643/matlab-fag.html

Mac Operating System		MATLAB
High Sierra	macOS 10.13	R2018a
Sierra	macOS 10.12	R2018a
El Capitan	OS X 10.11	R2018a
Yosemite	OS X 10.10	R2017a
Mavericks	OS X 10.9.5	R2015b
	OS X 10.9	R2014b
Mountain Lion	OS X 10.8	R2014b
Lion	OS X 10.7.4 & above	R2014b
	OS X 10.7	R2012a or b
Snow Leopard	OS X 10.6.4 & above	R2012a or b
	OS X 10.6.x	R2010b
Leopard	OS X 10.5.8 & above	R2010b
	OS X 10.5.5 & above	R2010a
	OS X 10.5.x	R2008b