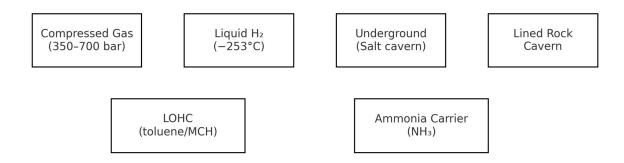
• SOEC: High-temperature operation using steam; can reduce electrical demand per kg H₂ when heat is available; earlier commercial maturity.

3) Thermodynamics, Energy & Water Needs

Illustrative system electricity draw: \approx 52–55 kWh per kg H₂ for AEL/PEM. Stack water need \approx 9 L per kg H₂ (pretreatment/upstream water may increase total).

Rule-of-thumb design notes:

- Power price and utilization (capacity factor) dominate levelized cost of hydrogen (LCOH).
- PEM excels for fast load-following; pairing with variable renewables is common.
- SOEC benefits when high-grade heat or steam is already available.


4) System Integration with Renewables

Electrolysers can act as flexible loads, absorbing surplus wind/solar and reducing curtailment. Storage decouples production from demand, enabling steady downstream processes.

5) Storage Pathways & Logistics

Options include compressed gas, liquid hydrogen, underground caverns, LOHC, and ammonia as a carrier. Choice depends on scale, distance, and end use.

Figure 2. Storage options overview.

6) Industrial Applications

- 1. Chemicals (near-term):
- Ammonia (NH₃): Direct replacement of grey H₂ in Haber–Bosch; major potential volumes.
- Methanol (CH₃OH): Synthesized from H₂ + CO₂; a platform for chemicals/e-fuels.
- Refining: Hydrotreating/hydrocracking can substitute green H₂ for conventional hydrogen. Figure 3. Green ammonia chain.

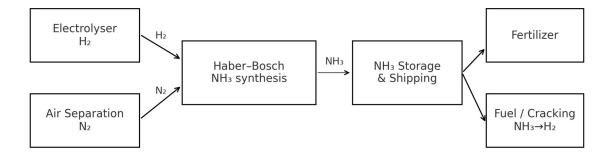
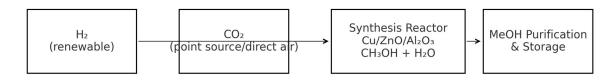
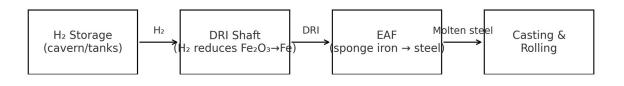



Figure 4. CO₂-to-methanol via green H₂.



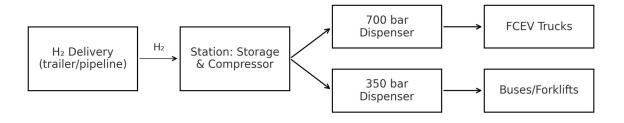
Typical: 50-70 bar, 200-280°C

2. Iron & Steel (H_2 -DRI \rightarrow EAF):

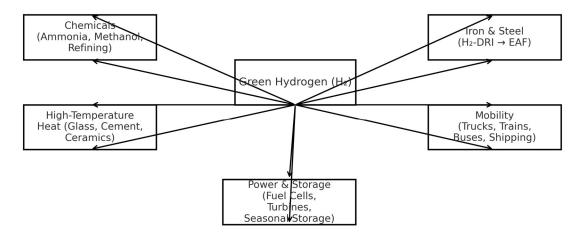
Hydrogen reduces iron ore to sponge iron in a shaft furnace; electric arc furnace melts and refines to steel. Early commercial projects are underway in Europe.

Figure 5. H₂-DRI to EAF steel flow.

By-product: H_2O (steam) Recycled as process water


3. High-Temperature Process Heat:

Sectors like glass, ceramics, and chemicals may use H_2 where >1000°C heat is required and direct electrification is difficult.


4. Mobility & Logistics:

Hydrogen refuelling for heavy-duty trucks, buses, trains, and port equipment; fuel-cell vehicles where fast refuelling/long range matter.

Figure 6. Station layout for mobility.

Industrial Applications of Green Hydrogen

7) Case Studies

- HYBRIT (Sweden): hydrogen storage in rock caverns enables flexible steelmaking; DRI→EAF route demonstrates deep decarbonization.
- NEOM (Saudi Arabia): multi-GW renewables to green ammonia for export; illustrates mega-project integration.

Oman Hydrom: structured land auctions and export orientation showcase policy-driven scaling.

8) Safety & Standards

Key pillars: detection, ventilation/purge, ignition control; plus training, procedures, and compliance with evolving codes/standards.

Figure 7. Safety building blocks.

Training • Procedures • Codes & Standards

9) Economics & Policy (LCOH Sensitivity)

Illustrative calculation (not a quote): If electricity costs \$20/MWh (\$0.02/kWh) and specific use is 52 kWh/kg, power cost $\approx $1.04/kg$. At \$40/MWh, $\approx $2.08/kg$. Add capex/opex proxies and consider incentives (e.g., U.S. 45V) to discuss net cost.

Appendix: Chemical Structures & Formulas (Educational)

- Hydrogen: H-H (σ bond); diatomic gas.
- Ammonia: NH_3 (trigonal pyramidal; $H-N-H \approx 107^\circ$).
- Methanol: CH₃-OH (polar protic solvent; industrial intermediate).
- Methylcyclohexane (MCH) ↔ Toluene + 3H₂ (LOHC pair)