At the cathode, oxygen reduction ($\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$) proceeds on Pt-based catalysts. The open-circuit voltage (OCV) is described by the Nernst equation and decreases with temperature and with partial-pressure deviations from standard states.

Practical fuel cells operate below the reversible voltage due to polarization losses: (i) activation overpotential at both electrodes, (ii) ohmic losses through the membrane/electrodes/interconnects, and (iii) mass-transport limitations at high current densities. The resulting V—i curve exhibits a kinetic region, a quasi-linear ohmic region, and a concentration-loss region. Water management (avoiding membrane dry-out and cathode flooding) and thermal control are decisive for stable output.

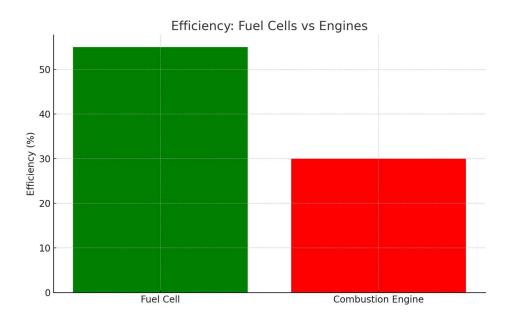
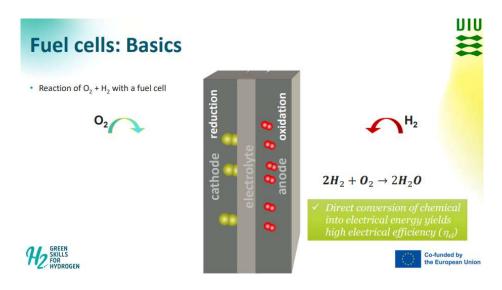


Figure 3. Illustrative efficiency comparison between fuel cells and heat engines.


6. Components, Materials, and Degradation

Anode/Cathode: Gas-diffusion electrodes incorporate a porous carbon support, Pt-based nanoparticles, and an ionomer binder to create triple-phase boundaries for charge transfer. Catalyst loading and dispersion strongly influence activity and durability.

Electrolyte: PEMs (e.g., Nafion) conduct protons when hydrated; conductivity depends on water content and temperature. High-temperature membranes and reinforced composites seek improved tolerance to impurities and broader operating windows.

Bipolar plates & seals: Graphite, coated metal, or composite plates provide current collection and gas management channels. Elastomeric gaskets maintain sealing under thermal and humidity cycling.

Degradation: Mechanisms include Pt agglomeration/dissolution, carbon corrosion, membrane chemical/mechanical attack, and contaminant poisoning (CO, sulfur). Lifetime targets for vehicles exceed 5,000–8,000 operating hours; for stationary systems 20,000–40,000 hours are common benchmarks.

Principle diagram of hydrogen fuel cell

7. Storage, and Safety

Storage options include compressed gas (350/700 bar), liquid hydrogen (~20 K) with boil-off management, and solid-state storage (metal hydrides, chemical carriers like LOHCs). System selection trades volumetric/gravimetric density, cost, and response dynamics. Safety frameworks address leak detection, ventilation, and deflagration risk mitigation.

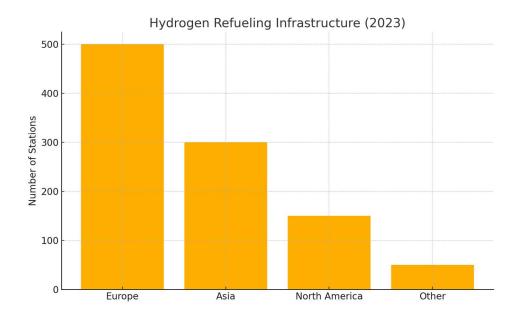
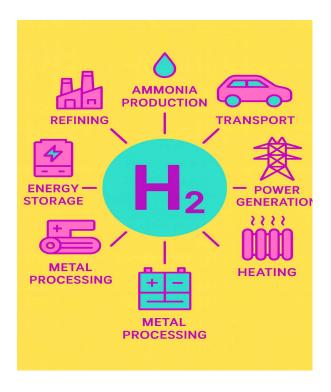



Figure 4. Indicative hydrogen refueling infrastructure by region (illustrative counts).

Uses of hydrogen gas

Outlook and Conclusions

Hydrogen fuel cells align with deep decarbonization needs where batteries are weight-constrained or where duty cycles favor fast refueling and continuous power. Continued R&D in catalysts and membranes, scaled manufacturing, and build-out of low-carbon hydrogen supply and infrastructure are the pillars of near-term progress.

References

International Energy Agency (IEA), World Energy Outlook 2022.

IRENA, Renewable Energy Statistics 2022.

Barbir, F., PEM Fuel Cells: Theory and Practice, Elsevier, 2013.

O'Hayre, R.; Cha, S.-W.; Colella, W.; Prinz, F., Fuel Cell Fundamentals, Wiley, 2016.

Larminie, J.; Dicks, A., Fuel Cell Systems Explained, Wiley, 2017.