Hydrogen Properties, Production, Storage, and Safety

1. Introduction – Hydrogen as an Energy Carrier

Hydrogen is the lightest element with high gravimetric energy density (120 MJ/kg), nearly three times gasoline. Its low volumetric density, however, makes storage and transport challenging. Hydrogen is vital for fuel cells. Carrier such as for electricity, industry, building and transport.

2. Hydrogen Production – Steam Methane Reforming (SMR)

SMR is the dominant method (\sim 70% of global H₂). It reacts CH₄ with steam:

 $CH_4 + H_2O \rightarrow CO + 3H_2$

Followed by water-gas shift:

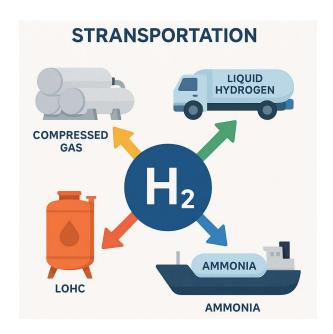
 $CO + H_2O \rightarrow CO_2 + H_2$

SMR is efficient but CO₂ intensive, unless combined with carbon capture.

3. Hydrogen Production – Electrolysis of Water

Electrolysis splits water into hydrogen and oxygen using electricity:

 $2H_2O \rightarrow 2H_2 + O_2$


If powered by renewable electricity, electrolysis produces 'green hydrogen'. Alkaline, PEM, and solid oxide electrolysis cells (SOECs) are under development.

4. Hydrogen Production – Biomass Gasification

Biomass gasification converts organic matter into syngas (H_2 + CO). This renewable pathway reduces net CO_2 emissions and utilizes agricultural waste. Challenges: feedstock variability and $\[\]$ Compressed Gas \rightarrow Stored in high-pressure cylinders (350–700 bar). Common for small-scale and vehicle refueling.

- 1. **Liquid Hydrogen** → Stored at cryogenic temperatures (-253 °C) in insulated tanks. Higher density, used for trucks and aerospace.
- 2. **LOHC (Liquid Organic Hydrogen Carriers)** → Hydrogen bound in liquid compounds, making storage and transport safer at ambient conditions.
- 1. **Ammonia (NH₃)** \rightarrow Used as a hydrogen carrier since it is easier to liquefy and transport by ship; hydrogen is released at destination.

efficiency.

5. Hydrogen Storage & Transportati

6. Safety Considerations

Hydrogen has a wide flammability range (4–75%) and invisible flames. Safety requires leak detection sensors, ventilation, and robust standards (ISO, SAE).

7. Case Study & Conclusion

Case: Germany's National Hydrogen Strategy invests €9B in electrolysis and hydrogen transport. Conclusion: Hydrogen production and safe storage are essential for the hydrogen economy.

Figure: Energy density comparison of hydrogen vs conventional fuels.

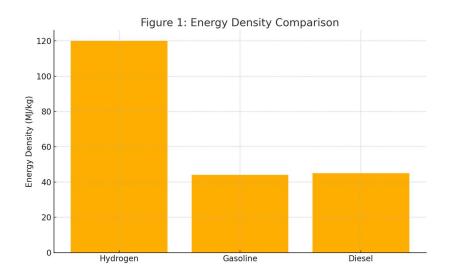


Figure 2: Share of hydrogen production methods globally.

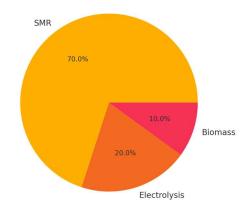
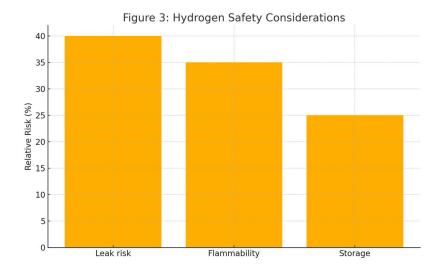



Figure 2: Hydrogen Production Pathways

