Problem 5 – CHP Efficiency

Question:

From Problem 2, η_{elec} = 50.6%. If 80% of the waste heat is recovered, calculate the CHP efficiency.

Solution:

Heat fraction = 1 - 0.506 = 0.494Recovered = $0.80 \times 0.494 = 0.395$ η _CHP = 0.506 + 0.395 = 0.901 = 90.1%

Final Answer:

CHP efficiency = 90.1%

Problem 6 – Nernst Correction with Gas Pressures

Ouestion:

At 25 °C, the reversible voltage is corrected for partial pressures: $E = E^{\circ} + (RT/2F) \ln(pH2 \times pO2^{\circ}0.5)$. If pH2 = 0.80 atm, pO2 = 0.21 atm, $E^{\circ} = 1.229$ V, RT/2F = 0.01285 V, calculate E_rev and efficiency at V = 0.75 V.

Solution:

 $\begin{aligned} &\ln(0.8\sqrt{0.21}) = \ln(0.3666) = -1.003\\ &\Delta E = 0.01285 \times (-1.003) = -0.0129 \text{ V}\\ &E_\text{rev} = 1.229 - 0.0129 = 1.216 \text{ V}\\ &\eta = (0.75 \ / \ 1.216) \times 0.8296 = 0.6167 \times 0.8296 = 51.2\% \end{aligned}$

Final Answer:

E_rev = 1.216 V, Efficiency = 51.2%

Problem 7 – Temperature Effect

Question:

The reversible voltage decreases with temperature as $dE/dT \approx -0.000847$ V/K. From 25 °C to 80 °C ($\Delta T = 55$ K), calculate the new reversible voltage and efficiency at V = 0.70 V.

Solution:

```
\Delta E = -0.000847 × 55 = -0.0466 V

E_rev = 1.229 - 0.0466 = 1.182 V

\eta = (0.70 / 1.182) × 0.8296 = 0.592 × 0.8296 = 49.1%
```

Final Answer:

 $E_{rev} = 1.182 \text{ V, Efficiency} = 49.1\%$

Problem 8 – Efficiency with Upstream Reformer

Question:

A fuel processor converts methane to hydrogen with 75% efficiency. The fuel cell stack itself operates at 50% efficiency. Calculate the overall system efficiency.

Solution:

 $\eta_{\text{-}}$ sys = 0.75 × 0.50 = 0.375 = 37.5%

Final Answer:

System efficiency = 37.5%

Problem 9 – Net AC Efficiency

Question:

A stack operates at 48% efficiency (HHV). The inverter efficiency is 95%, and parasitic loads consume 8% of the DC output. Calculate the net AC efficiency.

Solution:

Net DC after parasitics = $0.92 \times 0.48 = 0.4416$ Net AC = $0.4416 \times 0.95 = 0.419 = 41.0\%$

Final Answer:

Net AC efficiency = 41.0%

Problem 10 - HHV vs LHV Reporting

Question:

At a given operating point, V/E_rev = 0.60. Compare efficiency on HHV and LHV bases.

Solution:

 $\eta_{\text{LHV}} = 0.60 \times 0.8296 = 49.8\%$ $\eta_{\text{LHV}} = 0.60 \times 0.9449 = 56.7\%$

Final Answer:

HHV = 49.8%, LHV = 56.7%

Problem 11 – Efficiency Drop with Voltage Loss

Ouestion:

A fuel cell runs at 0.75 V initially and drops to 0.71 V after 5000 h. Calculate the efficiency drop (HHV basis).

Solution:

```
\eta_{\text{initial}} = (0.75 / 1.229) \times 0.8296 = 50.6\%

\eta_{\text{final}} = (0.71 / 1.229) \times 0.8296 = 47.8\%

Drop = 50.6 - 47.8 = 2.8 points (~5.5% relative)
```

Final Answer:

Efficiency drop = 2.8 percentage points

Problem 12 – 10 kW Stack Efficiency and Fuel Flow

Question:

A 60-cell stack operates at 0.72 V/cell, giving V_stack = 43.2 V. The net power output is 10 kW. Calculate the required hydrogen flow rate and overall efficiency.

Solution:

Current: I = P/V = 10000/43.2 = 231.5 A

From voltage-based formula: $\eta \approx (0.72 / 1.229) \times 0.8296 = 48.6\%$

Fuel power: Pfuel = 10000 / 0.486 = 20.6 kW

Hydrogen flow: $\dot{n}H2 = 20600 / 285830 = 0.072 \text{ mol/s} (~97 \text{ SLPM})$

Note: Current of \sim 14,000 A would be required for this flow unless parallelization is used. The efficiency remains \sim 48.6%.

Final Answer:

Efficiency $\approx 48.6\%$, Hydrogen flow ≈ 0.072 mol/s (~ 97 SLPM)

2. Voltage-Current Characteristics

Fuel cell polarization curves describe how voltage declines as current density increases. There are three characteristic regions:

- Activation region: steep voltage drop at low current due to slow oxygen reduction reaction (ORR).
- Ohmic region: nearly linear drop caused by resistive losses in the membrane and electrodes.
- Concentration region: sharp voltage fall at high currents when mass transport cannot supply sufficient reactants.

For a PEMFC operating at 0.7 V and 0.5 A/cm², the cell produces 0.35 W/cm². At higher currents, performance falls due to losses.

4. Power Density

Power density (P) is defined as:

 $P = V \times i$

where V is the voltage and i the current density. It indicates how much power can be produced per electrode area.

Example: At V = 0.65 V and i = 1.2 A/cm², P = 0.78 W/cm². PEMFCs typically range 0.5-1.0 W/cm², while SOFCs may exceed 2.0 W/cm² at high temperatures.

High power density is crucial for compact systems, especially in transportation.

Hydrogen Fuel Cell – Current, Voltage & Power Detailed Math Problems with Step-by-Step Solutions

Key Relations (used throughout)

Power density: $p = i \times V (W/cm^2)$

Stack power: $P = I \times V_{stack}$ (W), where $I = i \times A_{cell}$ (A)

Linear polarization: V = E - iR (E in V, R in $\Omega \cdot cm^2$, i in A/cm²)

Semi-empirical example: $V(i) = E - a \ln(i) - b i$ (natural log unless noted)

Ohmic drop from ASR: $\Delta V_{ohmic} = i \times ASR$ (V)

Hydrogen consumption (Faraday's law): $\dot{n}_H2 = I/(2F)$ (mol/s), F = 96485 C/mol

Oxygen consumption: $\dot{n}_0 = I/(4F)$ (mol/s)

STP conversion: 1 mol = 22.414 L; 1 L/s = 60 L/min (SLPM)

Problem 1 - Direct Power Density

Question:

A PEM hydrogen fuel cell operates at a current density $i = 0.60 \text{ A/cm}^2$ with a cell voltage V = 0.70 V. Compute the power density p, expressing units clearly.

Solution:

Given: $i = 0.60 \text{ A/cm}^2$, V = 0.70 V.

Relation: $p = i \times V (W/cm^2)$.

Calculation: $p = 0.60 \times 0.70 = 0.42 \text{ W/cm}^2$.

Final Answer: $p = 0.42 \text{ W/cm}^2$.

Problem 2 – Maximum Power for Linear Polarization (V = E - iR)

Question:

A cell shows an approximately linear polarization curve V = E - iR with E = 0.95 V and area-specific